Welcome to corona.ai! It looks like this is your first time here. Would you like a tour?
You can always start a tour after closing using the button on the left side of the page.

Here you can see the gene and the variant being analyzed.

We summarize a large amount of clinical data on this gene here. Links are added where available to source information.

Prediction information is summarized here, the percentage shows the likelihood that the variant is pathogenic.

Agreement is a measure (out of 5 stars) of how much our predictors agree between each other. When predictors agree, the prediction is more likely to be correct.

Data quality is a measure (out of 5 stars) of how good the underlying data for this prediction is. This is an assessment of the depth of our alignments and the number of structures available, among other factors.

This table shows literature for this exact position and protein, if it is available.

This table shows literature for this position in homologous proteins, if it is available.

This is a description of our prediction.

This plot illustrates the agreement between different classifiers. If the prediction distributions align on one side it indicates increased certainty in the prediction.

This describes the data quality for this position.

Here are the four factors that contributed most to the prediction. Factors that contributed to a benign prediction are colored blue, pathogenic factors are colored red.

This plot shows all the factors for prediction. Factors that contributed to a benign prediction are colored blue, pathogenic factors are colored red.

This plot shows the conservation on this position.

Here the conservation statistics are described.

This is an interactive structure display. Feel free to play with it after the tour!

This is a list of interactions we found for this position.

Here you can download scenes for different molecular viewers, so you can analyze the structure in more detail.

You can use the index to quickly navigate through the page. Thanks for following the tour!

Start tour

Summary

BRCA1 - ENST00000357654

Gene BRCA1 - ENSG00000012048 | ENSP00000350283 | ENST00000357654
Ensembl | RefSeq | UniProt
Location GRCh38 17:43044295-43125370 Ensembl UCSC
Description BRCA1, DNA repair associated

E3 ubiquitin-protein ligase that specifically mediates the formation of 'Lys-6'-linked polyubiquitin chains and plays a central role in DNA repair by facilitating cellular responses to DNA damage. It is unclear whether it also mediates the formation of other types of polyubiquitin chains. The E3 ubiquitin-protein ligase activity is required for its tumor suppressor function. The BRCA1-BARD1 heterodimer coordinates a diverse range of cellular pathways such as DNA damage repair, ubiquitination and transcriptional regulation to maintain genomic stability. Regulates centrosomal microtubule nucleation. Required for normal cell cycle progression from G2 to mitosis. Required for appropriate cell cycle arrests after ionizing irradiation in both the S-phase and the G2 phase of the cell cycle. Involved in transcriptional regulation of P21 in response to DNA damage. Required for FANCD2 targeting to sites of DNA damage. May function as a transcriptional regulator. Inhibits lipid synthesis by binding to inactive phosphorylated ACACA and preventing its dephosphorylation. Contributes to homologous recombination repair (HRR) via its direct interaction with PALB2, fine-tunes recombinational repair partly through its modulatory role in the PALB2-dependent loading of BRCA2-RAD51 repair machinery at DNA breaks. Component of the BRCA1-RBBP8 complex which regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage via BRCA1-mediated ubiquitination of RBBP8. Acts as a transcriptional activator

Condition(s)
  • Breast-ovarian cancer, familial, 1 (BROVCA1)

    A condition associated with familial predisposition to cancer of the breast and ovaries. Characteristic features in affected families are an early age of onset of breast cancer (often before age 50), increased chance of bilateral cancers (cancer that develop in both breasts, or both ovaries, independently), frequent occurrence of breast cancer among men, increased incidence of tumors of other specific organs, such as the prostate.
    Disease susceptibility is associated with variations affecting the gene represented in this entry. Mutations in BRCA1 are thought to be responsible for more than 80% of inherited breast-ovarian cancer. OMIM

    MedGen: C0027672 C1458155 C0677776 C0006142 C2676676 C1140680 C0678222 OrphaNet: 145 180250 227535 213500
  • Breast cancer (BC)

    A common malignancy originating from breast epithelial tissue. Breast neoplasms can be distinguished by their histologic pattern. Invasive ductal carcinoma is by far the most common type. Breast cancer is etiologically and genetically heterogeneous. Important genetic factors have been indicated by familial occurrence and bilateral involvement. Mutations at more than one locus can be involved in different families or even in the same case.
    Disease susceptibility is associated with variations affecting the gene represented in this entry. Mutations in BRCA1 are thought to be responsible for 45% of inherited breast cancer. Moreover, BRCA1 carriers have a 4-fold increased risk of colon cancer, whereas male carriers face a 3-fold increased risk of prostate cancer. Cells lacking BRCA1 show defects in DNA repair by homologous recombination. OMIM

    MedGen: C0678222 C0006142 C0677776 C1458155 OrphaNet: 145 227535 180250
  • Fanconi anemia, complementation group S (FANCS)

    A form of Fanconi anemia, a disorder affecting all bone marrow elements and resulting in anemia, leukopenia and thrombopenia. It is associated with cardiac, renal and limb malformations, dermal pigmentary changes, and a predisposition to the development of malignancies. At the cellular level it is associated with hypersensitivity to DNA-damaging agents, chromosomal instability (increased chromosome breakage) and defective DNA repair.
    Disease susceptibility is associated with variations affecting the gene represented in this entry. OMIM

    MedGen: C2676676 C1140680 C0027672
  • Pancreatic cancer 4 (PNCA4)

    A malignant neoplasm of the pancreas. Tumors can arise from both the exocrine and endocrine portions of the pancreas, but 95% of them develop from the exocrine portion, including the ductal epithelium, acinar cells, connective tissue, and lymphatic tissue.
    Disease susceptibility is associated with variations affecting the gene represented in this entry. OMIM

    MedGen: C0027672
  • Ovarian cancer (OC)

    The term ovarian cancer defines malignancies originating from ovarian tissue. Although many histologic types of ovarian tumors have been described, epithelial ovarian carcinoma is the most common form. Ovarian cancers are often asymptomatic and the recognized signs and symptoms, even of late-stage disease, are vague. Consequently, most patients are diagnosed with advanced disease.
    Disease susceptibility is associated with variations affecting the gene represented in this entry. OMIM

    MedGen: C0919267 OrphaNet: 145
PDB and PDB position 4y2g ~> 1775 (Explore)
gnomAD This variant is not present in gnomAD .
Pathogenicity pathogenic according to Clinvar
Literature for His201Tyr in HDAC8 6 papers were found describing relevant variants in this protein (Explore)
Literature for similar variants in homologous proteins Not present

Literature

Literature for Met1775Lys in BRCA1

Literature available for this variant:

Advances in next-generation sequencing (NGS) have facilitated parallel analysis of multiple genes enabling the implementation of cost-effective, rapid, and high-throughput methods for the molecular diagnosis of multiple genetic conditions, including the identification of BRCA1 and BRCA2 mutations in high-risk patients for hereditary breast and ovarian cancer. We clinically validated a NGS pipeline designed to replace Sanger sequencing and multiplex ligation-dependent probe amplification analysis and to facilitate detection of sequence and copy number alterations in a single test focusing on a BRCA1/BRCA2 gene analysis panel. Our custom capture library covers 46 exons, including BRCA1 exons 2, 3, and 5 to 24 and BRCA2 exons 2 to 27, with 20 nucleotides of intronic regions both 5' and 3' of each exon. We analyzed 402 retrospective patients, with previous Sanger sequencing and multiplex ligation-dependent probe amplification results, and 240 clinical prospective patients. One-hundred eighty-three unique variants, including sequence and copy number variants, were detected in the retrospective (n = 95) and prospective (n = 88) cohorts. This standardized NGS pipeline demonstrated 100% sensitivity and 100% specificity, uniformity, and high-depth nucleotide coverage per sample (approximately 7000 reads per nucleotide). Subsequently, the NGS pipeline was applied to the analysis of larger gene panels, which have shown similar uniformity, sample-to-sample reproducibility in coverage distribution, and sensitivity and specificity for detection of sequence and copy number variants.
BACKGROUND: Inactivating germline mutations in the tumour suppressor gene BRCA1 are associated with a significantly increased risk of developing breast and ovarian cancer. A large number (>1500) of unique BRCA1 variants have been identified in the population and can be classified as pathogenic, non-pathogenic or as variants of unknown significance (VUS). Many VUS are rare missense variants leading to single amino acid changes. Their impact on protein function cannot be directly inferred from sequence information, precluding assessment of their pathogenicity. Thus, functional assays are critical to assess the impact of these VUS on protein activity. BRCA1 is a multifunctional protein and different assays have been used to assess the impact of variants on different biochemical activities and biological processes. METHODS AND RESULTS: To facilitate VUS analysis, we have developed a visualisation resource that compiles and displays functional data on all documented BRCA1 missense variants. BRCA1 Circos is a web-based visualisation tool based on the freely available Circos software package. The BRCA1 Circos web tool (http://research.nhgri.nih.gov/bic/circos/) aggregates data from all published BRCA1 missense variants for functional studies, harmonises their results and presents various functionalities to search and interpret individual-level functional information for each BRCA1 missense variant. CONCLUSIONS: This research visualisation tool will serve as a quick one-stop publically available reference for all the BRCA1 missense variants that have been functionally assessed. It will facilitate meta-analysis of functional data and improve assessment of pathogenicity of VUS.
Mutations in breast cancer susceptibility gene BRCA1 (breast cancer early-onset 1) are associated with increased risk of developing breast and ovarian cancers. BRCA1 is a large protein of 1863 residues with two small structured domains at its termini: a RING domain at the N-terminus and a BRCT (BRCA1 C-terminus domain) repeat domain at the C-terminus. Previously, we quantified the effects of missense mutations on the thermodynamic stability of the BRCT domains, and we showed that many are so destabilizing that the folded functional state is drastically depopulated at physiological temperature. In the present study, we ask whether and how reduced thermodynamic stability of the isolated BRCT mutants translates into loss of function of the full-length protein in the cell. We assessed the effects of missense mutants on different stages of BRCA1-mediated DNA repair by homologous recombination using chicken lymphoblastoid DT40 cells as a model system. We found that all of the mutations, regardless of how profound their destabilizing effects, retained some DNA repair activity and thereby partially rescued the chicken BRCA1 knockout. By contrast, the mutation R1699L, which disrupts the binding of phosphorylated proteins (but which is not destabilizing), was completely inactive. It is likely that both protein context (location of the BRCT domains at the C-terminus of the large BRCA1 protein) and cellular environment (binding partners, molecular chaperones) buffer these destabilizing effects such that at least some mutant protein is able to adopt the folded functional state.
African Americans have a disproportionate burden of aggressive young-onset breast cancer. Genomic testing for inherited predisposition to breast cancer is increasingly common in clinical practice, but comprehensive mutation profiles remain unknown for most minority populations. We evaluated 289 patients who self-identified as African American with primary invasive breast cancer and with personal or family cancer history or tumor characteristics associated with high genetic risk for all classes of germline mutations in known breast cancer susceptibility genes using a validated targeted capture and multiplex sequencing approach. Sixty-eight damaging germline mutations were identified in 65 (22 %, 95 % CI 18-28 %) of the 289 subjects. Proportions of patients with unequivocally damaging mutations in a breast cancer gene were 26 % (47/180; 95 % confident interval [CI] 20-33 %) of those with breast cancer diagnosis before age 45; 25 % (26/103; 95 % CI 17-35 %) of those with triple-negative breast cancer (TNBC); 29 % (45/156; 95 % CI 22-37 %) of those with a first or second degree relative with breast cancer before age 60 or with ovarian cancer; and 57 % (4/7; 95 % CI 18-90 %) of those with both breast and ovarian cancer. Of patients with mutations, 80 % (52/65) carried mutations in BRCA1 and BRCA2 genes and 20 % (13/65) carried mutations in PALB2, CHEK2, BARD1, ATM, PTEN, or TP53. The mutational allelic spectrum was highly heterogeneous, with 57 different mutations in 65 patients. Of patients meeting selection criteria other than family history (i.e., with young age at diagnosis or TNBC), 48 % (64/133) had very limited information about the history of cancer in previous generations of their families. Mutations in BRCA1 and BRCA2 or another breast cancer gene occur in one in four African American breast cancer patients with early onset disease, family history of breast or ovarian cancer, or TNBC. Each of these criteria defines patients who would benefit from genomic testing and novel therapies targeting DNA repair pathways.
BRCA1 and BRCA2 sequencing analysis detects variants of uncertain clinical significance in approximately 2 % of patients undergoing clinical diagnostic testing in our laboratory. The reclassification of these variants into either a pathogenic or benign clinical interpretation is critical for improved patient management. We developed a statistical variant reclassification tool based on the premise that probands with disease-causing mutations are expected to have more severe personal and family histories than those having benign variants. The algorithm was validated using simulated variants based on approximately 145,000 probands, as well as 286 BRCA1 and 303 BRCA2 true variants. Positive and negative predictive values of ≥99 % were obtained for each gene. Although the history weighting algorithm was not designed to detect alleles of lower penetrance, analysis of the hypomorphic mutations c.5096G>A (p.Arg1699Gln; BRCA1) and c.7878G>C (p.Trp2626Cys; BRCA2) indicated that the history weighting algorithm is able to identify some lower penetrance alleles. The history weighting algorithm is a powerful tool that accurately assigns actionable clinical classifications to variants of uncertain clinical significance. While being developed for reclassification of BRCA1 and BRCA2 variants, the history weighting algorithm is expected to be applicable to other cancer- and non-cancer-related genes.
The identification of variants of unknown clinical significance (VUS) in the BRCA1 gene complicates genetic counselling and causes additional anxiety to carriers. In silico approaches currently used for VUS pathogenicity assessment are predictive and often produce conflicting data. Furthermore, functional assays are either domain or function specific, thus they do not examine the entire spectrum of BRCA1 functions and interpretation of individual assay results can be misleading. PolyPhen algorithm predicted that the BRCA1 p.Ser36Tyr VUS identified in the Cypriot population was damaging, whereas Align-GVGD predicted that it was possibly of no significance. In addition the BRCA1 p.Ser36Tyr variant was found to be associated with increased risk (OR = 3.47, 95% CI 1.13-10.67, P = 0.02) in a single case-control series of 1174 cases and 1109 controls. We describe a cellular system for examining the function of exogenous full-length BRCA1 and for classifying VUS. We achieved strong protein expression of full-length BRCA1 in transiently transfected HEK293T cells. The p.Ser36Tyr VUS exhibited low protein expression similar to the known pathogenic variant p.Cys61Gly. Co-precipitation analysis further demonstrated that it has a reduced ability to interact with BARD1. Further, co-precipitation analysis of nuclear and cytosolic extracts as well as immunofluorescence studies showed that a high proportion of the p.Ser36Tyr variant is withheld in the cytoplasm contrary to wild type protein. In addition the ability of p.Ser36Tyr to co-localize with conjugated ubiquitin foci in the nuclei of S-phase synchronized cells following genotoxic stress with hydroxyurea is impaired at more pronounced levels than that of the p.Cys61Gly pathogenic variant. The p.Ser36Tyr variant demonstrates abrogated function, and based on epidemiological, genetic, and clinical data we conclude that the p.Ser36Tyr variant is probably associated with a moderate breast cancer risk.
Germline inactivating variants in BRCA1 lead to a significantly increased risk of breast and ovarian cancers in carriers. While the functional effect of many variants can be inferred from the DNA sequence, determining the effect of missense variants present a significant challenge. A series of biochemical and cell biological assays have been successfully used to explore the impact of these variants on the function of BRCA1, which contribute to assessing their likelihood of pathogenicity. It has been determined that variants that co-localize with structural or functional motifs are more likely to disrupt the stability and function of BRCA1. Here we assess the functional impact of 37 variants chosen to probe the functional impact of variants in phosphorylation sites and in the BRCT domains. In addition, we perform a meta-analysis of 170 unique variants tested by the transcription activation assays in the carboxy-terminal domain of BRCA1 using a recently developed computation model to provide assessment for functional impact and their likelihood of pathogenicity.
The breast and ovarian cancer susceptibility protein 1 (BRCA1) plays a central role in DNA damage response (DDR). Two tandem BRCA1 C-terminal (BRCT) domains interact with several proteins that function in DDR and contain the generally accepted motif pS-X-X-F (pS denoting phosphoserine and X any amino acid), including the ATR-interacting protein (ATRIP) and the BRCA1-associated protein required for ATM activation-1 (BAAT1). The crystal structures of the BRCA1 BRCTs bound to the phosphopeptides ATRIP (235-PEACpSPQFG-243) and BAAT1 (266-VARpSPVFSS-274) were determined at 1.75 Å and 2.2 Å resolution, respectively. The pSer and Phe(+3) anchor the phosphopeptides into the BRCT binding groove, with adjacent peptide residues contributing to the interaction. In the BRCA1-ATRIP structure, Gln(+2) is accommodated through a conformational change of the BRCA1 E1698 side chain. Importantly, isothermal titration calorimetry experiments showed that the size and charge of the side chains at peptide positions +1 and +2 contribute significantly to the BRCA1 BRCT-peptide binding affinity. In particular, the Asp(+1) and Glu(+2) in the human CDC27 peptide 816-HAAEpSDEF-823 abrogate the interaction with the BRCA1 BRCTs due in large part to electrostatic repulsion between Glu(+2) and E1698, indicating a preference of these domains for specific side chains at positions +1 and +2. These results emphasize the need for a systematic assessment of the contribution of the peptide residues surrounding pSer and Phe(+3) to the binding affinity and specificity of the BRCA1 BRCTs in order to elucidate the molecular mechanisms underlying the hierarchy of target selection by these versatile domains during DDR and tumorigenesis.
Carriers of BRCA1 germline mutations are predisposed to breast and ovarian cancers. Accumulated evidence shows that BRCA1 is quickly recruited to DNA lesions and plays an important role in the DNA damage response. However, the mechanism by which BRCA1 is recruited to DNA damage sites remains elusive. BRCA1 forms a Ring-domain heterodimer with BARD1, a major partner of BRCA1 that contains tandem BRCA1 C-terminus (BRCT) motifs. Here, we identify the BRCTs of BARD1 as a poly(ADP-ribose) (PAR)-binding module. The binding of the BARD1 BRCTs to PAR targets the BRCA1/BARD1 heterodimer to DNA damage sites. Thus, our study uncovers a PAR-dependent mechanism of rapid recruitment of BRCA1/BARD1 to DNA damage sites.
The breast cancer type 1 susceptibility protein (BRCA1) is involved in several important cellular pathways, including DNA damage repair, chromatin remodeling and checkpoint activation. The BRCA1 tumor suppression function has been attributed to its role in homologous recombination damage repair. In this review, historical facts concerning BRCA1, together with recent research advances regarding our understanding of the BRCA1 interacting proteins that are involved in, homologous recombination (HR) double strand break (DBS) repair and how these interacting proteins maintain chromosomal integrity, are discussed. In addition, this review poses the questions as to what extent HR repair cannot be properly fulfilled when breast cancer related mutations in the BRCA1 gene occur and how the recent and excessive studied poly-ADP ribose polymerase (PARP) inhibiting therapy approach links with the proposed tumor suppression function of the different BRCA1 domains.
Missense substitutions of uncertain clinical significance in the BRCA1 gene are a vexing problem in genetic counseling for women who have a family history of breast cancer. In this study, we evaluated the functions of 29 missense substitutions of BRCA1 in two DNA repair pathways. Repair of double-strand breaks by homology-directed recombination (HDR) had been previously analyzed for 16 of these BRCA1 variants, and 13 more variants were analyzed in this study. All 29 variants were also analyzed for function in double-strand break repair by the single-strand annealing (SSA) pathway. We found that among the pathogenic mutations in BRCA1, all were defective for DNA repair by either pathway. The HDR assay was accurate because all pathogenic mutants were defective for HDR, and all nonpathogenic variants were fully functional for HDR. Repair by SSA accurately identified pathogenic mutants, but several nonpathogenic variants were scored as defective or partially defective. These results indicated that specific amino acid residues of the BRCA1 protein have different effects in the two related DNA repair pathways, and these results validate the HDR assay as highly correlative with BRCA1-associated breast cancer.
BRCA1 controls early steps of the synthesis-dependent strand annealing (SDSA) pathway of homologous recombination, but has no known role following Rad51-mediated synapsis. Here we show that BRCA1 influences post-synaptic homologous recombination events, controlling the balance between short- (STGC) and long-tract gene conversion (LTGC) between sister chromatids. Brca1 mutant cells reveal a bias towards LTGC that is corrected by expression of wild-type but not cancer-predisposing BRCA1 alleles. The LTGC bias is enhanced by depletion of CtIP but reversed by inhibition of 53BP1, implicating DNA end resection as a contributor to the STGC/LTGC balance. The impact of BRCA1/CtIP loss on the STGC/LTGC balance is abolished when the second (non-invading) end of the break is unable to support termination of STGC by homologous pairing (annealing). This suggests that BRCA1/CtIP-mediated processing of the second end of the break controls the annealing step that normally terminates SDSA, thereby suppressing the error-prone LTGC outcome.
Mutations of the breast and ovarian cancer susceptibility gene 1 (BRCA1) account for about 40-45% of hereditary breast cancer cases. Moreover, a significant fraction of sporadic (non-hereditary) breast and ovarian cancers exhibit reduced or absent expression of the BRCA1 protein, suggesting an additional role for BRCA1 in sporadic cancers. BRCA1 follows the classic pattern of a highly penetrant Knudsen-type tumor suppressor gene in which one allele is inactivated through a germ-line mutation and the other is mutated or deleted within the tumor. BRCA1 is a multi-functional protein but it is not fully understood which function(s) is (are) most important for tumor suppression, nor is it clear why BRCA1-mutations confer a high risk for breast and ovarian cancers and not a broad spectrum of tumor types. Here, we will review BRCA1 functions in the DNA damage response (DDR), which are likely to contribute to tumor suppression. In the process, we will highlight some of the controversies and unresolved issues in the field. We will also describe a recently identified and under-investigated role for BRCA1 in the regulation of telomeres and the implications of this role in the DDR and cancer suppression.
Germline inactivating mutations in BRCA1 and BRCA2 genes are responsible for Hereditary Breast and Ovarian Cancer Syndrome (HBOCS). Genetic testing of these genes is available, although approximately 15% of tests identify variants of uncertain significance (VUS). Classification of these variants into pathogenic or non-pathogenic type is an important challenge in genetic diagnosis and counseling. The aim of the present study is to functionally assess a set of 7 missense VUS (Q1409L, S1473P, E1586G, R1589H, Y1703S, W1718L and G1770V) located in the C-terminal region of BRCA1 by combining in silico prediction tools and structural analysis with a transcription activation (TA) assay. The in silico prediction programs gave discrepant results making its interpretation difficult. Structural analysis of the three variants located in the BRCT domains (Y1703S, W1718L and G1770V) reveals significant alterations of BRCT structure. The TA assay shows that variants Y1703S, W1718L and G1770V dramatically compromise the transcriptional activity of BRCA1, while variants Q1409L, S1473P, E1586G and R1589H behave like wild-type BRCA1. In conclusion, our results suggest that variants Y1703S, W1718L and G1770V can be classified as likely pathogenic BRCA1 mutations.
Germline mutations in the tumor suppressor gene BRCA1 confer an estimated lifetime risk of 56-80% for breast cancer and 15-60% for ovarian cancer. Since the mid 1990s when BRCA1 was identified, genetic testing has revealed over 1,500 unique germline variants. However, for a significant number of these variants, the effect on protein function is unknown making it difficult to infer the consequences on risks of breast and ovarian cancers. Thus, many individuals undergoing genetic testing for BRCA1 mutations receive test results reporting a variant of uncertain clinical significance (VUS), leading to issues in risk assessment, counseling, and preventive care. Here, we describe functional assays for BRCA1 to directly or indirectly assess the impact of a variant on protein conformation or function and how these results can be used to complement genetic data to classify a VUS as to its clinical significance. Importantly, these methods may provide a framework for genome-wide pathogenicity assignment.
BRCA1 and BRCA2 are two major breast and ovarian cancer susceptibility genes. BRCA1 was the first discovered and has been a focus of research for these cancers. BRCA1 mediates tumor suppression in part through pleiotropic interactions with a network of DNA repair proteins on chromatin. BRCA1 mutations cause homologous recombination (HR)-mediated DNA repair deficiency, genomic instability, and DNA-damaging agent hypersensitivity. Although BRCA1 and BRCA2 have some shared functions in cancer predisposition and therapy response, there are also key differences indicating divergent roles for each protein. This review summarizes and highlights recent insights into the molecular events responsible for BRCA1 tumor suppression, emphasizing the DNA repair function of BRCA1 as a nexus between its roles in cancer development and therapy.
Inherited mutations in the BRCA1 and BRCA2 genes are the strongest genetic predictors of breast cancer and are the primary causes of familial breast/ovarian cancer syndrome. The frequency, spectrum and penetrance of mutant BRCA1/BRCA2 alleles have been determined for several populations, but little information is available for populations of African ancestry, who suffer a disproportionate burden of early onset breast cancer. We have performed complete sequence analysis of all BRCA1 and BRCA2 exons and intron-exon boundaries for 434 Nigerian breast cancer patients from the University College Hospital in Ibadan, Nigeria. In contrast to previous suggestions that BRCA1/BRCA2 mutation frequencies are low or undetectable in African American populations, we find that Nigerian breast cancer patients have an exceptionally high frequency of BRCA1 and BRCA2 mutations (7.1 and 3.9%, respectively). Sixteen different BRCA1 mutations were detected, seven of which have never been reported previously, while thirteen different BRCA2 mutations were seen, six of which were previously unreported. Thus, our data support enrichment for genetic risk factors in this relatively young cohort. To improve breast cancer outcomes, we suggest that family-based models of risk assessment and genetic counseling coupled with interventions to reduce breast cancer risk should be broadly disseminated in Nigeria and other underserved and understudied populations.
Recurrent mutations constituted nearly three quarters of all BRCA1 mutations and almost half of all BRCA2 mutations identified in the first cohort of the Nigerian Breast Cancer Study. To further characterize breast/ovarian cancer risks associated with BRCA1/BRCA2 mutations in the African diaspora, we genotyped recurrent mutations among Nigerian, African American, and Barbadian breast cancer patients. A replication cohort of 356 Nigerian breast cancer patients was genotyped for 12 recurrent BRCA1/2 mutant alleles (Y101X, 1742insG, 4241delTG, M1775R, 4359insC, C64Y, 1623delTTAAA, Q1090X, and 943ins10 from BRCA1, and 1538delAAGA, 2630del11, and 9045delGAAA from BRCA2) by means of SNaPshot followed by direct sequencing or by direct sequencing alone. In addition, 260 African Americans and 118 Barbadians were genotyped for six of the recurrent BRCA1 mutations by SNaPshot assay. Of all the BRCA1/2 recurrent mutations we identified in the first cohort, six were identified in 11 patients in the replication study. These mutation carriers constitute 3.1 % [95 % Confidence Interval (CI) 1.6-5.5 %] of the replication cohort. By comparison, 6.9 % (95 % CI 4.7-9.7 %) of the discovery cohort carried BRCA1/2 recurrent mutations. For the subset of recurrent mutations we tested in breast cancer cases from Barbados or the United States, only two 943ins10 carriers were identified in African Americans. Nigerian breast cancer patients from Ibadan carry a broad and unique spectrum of BRCA1/2 mutations. Our data suggest that BRCA1/2 mutation testing limited to recurrent mutations is not sufficient to understand the BRCA1/2-associated breast cancer risk in African populations in the diaspora. As the cost of Sanger sequencing is considerably reduced, deploying innovative technologies such as high throughput DNA sequencing of BRCA1/2 and other cancer susceptibility genes will be essential for identifying high-risk individuals and families to reduce the burden of aggressive early onset breast cancer in low-resource settings.
BRCA1, a multi-domain protein, is mutated in a large percentage of hereditary breast and ovarian cancers. BRCA1 is most often mutated in three domains or regions: the N-terminal RING domain, exons 11-13, and the BRCT domain. The BRCA1 RING domain is responsible for the E3 ubiquitin ligase activity of BRCA1 and mediates interactions between BRCA1 and other proteins. BRCA1 ubiquitinates several proteins with various functions. The BRCA1 BRCT domain binds to phosphoproteins with specific sequences recognized by both BRCA1 and ATM/ATR kinases. Structural studies of the RING and BRCT domains have revealed the molecular basis by which cancer causing mutations impact the functions of BRCA1. While no structural data is available for the amino acids encoded by exons 11-13, multiple binding sites and functional domains exist in this region. Many mutations in exons 11-13 have deleterious effects on the function of these domains. In this mini-review, we examine the structure-function relationships of the BRCA1 protein and the relevance to cancer progression.
BRCA1 is a DNA damage response protein and functions in the nucleus to stimulate DNA repair and at the centrosome to inhibit centrosome overduplication in response to DNA damage. The loss or mutation of BRCA1 causes centrosome amplification and abnormal mitotic spindle assembly in breast cancer cells. The BRCA1-BARD1 heterodimer binds and ubiquitinates γ-tubulin to inhibit centrosome amplification and promote microtubule nucleation; however regulation of BRCA1 targeting and function at the centrosome is poorly understood. Here we show that both N and C termini of BRCA1 are required for its centrosomal localization and that BRCA1 moves to the centrosome independently of BARD1 and γ-tubulin. Mutations in the C-terminal phosphoprotein-binding BRCT domain of BRCA1 prevented localization to centrosomes. Photobleaching experiments identified dynamic (60%) and immobilized (40%) pools of ectopic BRCA1 at the centrosome, and these are regulated by the nuclear export receptor CRM1 (chromosome region maintenance 1) and BARD1. CRM1 mediates nuclear export of BRCA1, and mutation of the export sequence blocked BRCA1 regulation of centrosome amplification in irradiated cells. CRM1 binds to undimerized BRCA1 and is displaced by BARD1. Photobleaching assays implicate CRM1 in driving undimerized BRCA1 to the centrosome and revealed that when BRCA1 subsequently binds to BARD1, it is less well retained at centrosomes, suggesting a mechanism to accelerate BRCA1 release after formation of the active heterodimer. Moreover, Aurora A binding and phosphorylation of BRCA1 enhanced its centrosomal retention and regulation of centrosome amplification. Thus, CRM1, BARD1 and Aurora A promote the targeting and function of BRCA1 at centrosomes.
Although evidence suggests an importance of genetic factors in the development of breast cancer in Taiwanese (ethnic Chinese) women, including a high incidence of early-onset and secondary contralateral breast cancer, a major breast cancer predisposition gene, BRCA1, has not been well studied in this population. In fact, the carcinogenic impacts of many genetic variants of BRCA1 are unknown and classified as variants of uncertain significance (VUS). It is therefore important to establish a method to characterize the BRCA1 VUSs and understand their role in Taiwanese breast cancer patients. Accordingly, we developed a multimodel assessment strategy consisting of a prescreening portion and a validated functional assay to study breast cancer patients with early-onset, bilateral or familial breast cancer. We found germ-line BRCA1 mutations in 11.1% of our cohort and identified one novel missense mutation, c.5191C>A. Two genetic variants were initially classified as VUSs (c.1155C>T and c.5191C>A). c.1155C>T is not predicted to be deleterious in the prescreening portion of our assessment strategy. c.5191C>A, on the other hand, causes p.T1691K, which is predicted to have high deleterious probability because of significant structural alteration, a high deleterious score in the predictive programs and, clinically, triple negative characteristics in breast tumors. This mutant is confirmed by transcription activation and yeast growth-inhibition assays. In conclusion, we show as high a prevalence of germ-line BRCA1 mutation in high-risk Taiwanese patients as in Caucasians and demonstrate a useful strategy for studying BRCA1 VUSs.
BACKGROUND: Women who are diagnosed with a deleterious mutation in either breast cancer (BRCA) gene have a high risk of developing breast and ovarian cancers at young ages. In this study, the authors assessed age at diagnosis in 2 generations of families with known mutations to investigate for earlier onset in subsequent generations. METHODS: Of the 132 BRCA-positive women with breast cancer who participated in a high-risk protocol at The University of Texas MD Anderson Cancer Center (Gen 2), 106 women could be paired with a family member in the previous generation (Gen 1) who was diagnosed with a BRCA-related cancer (either breast cancer or ovarian cancer). Age at diagnosis, location of the mutation, and year of birth were recorded. A previously published parametric anticipation model was applied in these genetically predisposed families. RESULTS: The median age of cancer diagnosis was 42 years (range, 28-55 years) in Gen 2 and 48 years (range, 30-72 years) in Gen 1 (P < .001). [corrected]. In the parametric model, the estimated change in the expected age at onset for the entire cohort was 7.9 years (P < .0001). Statistically significant earlier ages at diagnosis also were observed within subgroups of BRCA1 and BRCA2 mutations, maternal inheritance, paternal inheritance, breast cancer only, and breast cancer-identified and ovarian cancer-identified families. CONCLUSIONS: Breast and ovarian cancers in BRCA mutation carriers appeared to be diagnosed at an earlier age in later generations. The authors concluded that patients who are younger at the onset of BRCA-related cancers should continue to be tracked to offer appropriate screening modalities at appropriate ages.
Clinical mutation screening of the BRCA1 and BRCA2 genes for the presence of germline inactivating mutations is used to identify individuals at elevated risk of breast and ovarian cancer. Variants identified during screening are usually classified as pathogenic (increased risk of cancer) or not pathogenic (no increased risk of cancer). However, a significant proportion of genetic tests yields variants of uncertain significance (VUS) that have undefined risk of cancer. Individuals carrying these VUS cannot benefit from individualized cancer risk assessment. Recently, a quantitative "posterior probability model" for assessing the clinical relevance of VUS in BRCA1 or BRCA2, which integrates multiple forms of genetic evidence has been developed. Here, we provide a detailed review of this model. We describe the components of the model and explain how these can be combined to calculate a posterior probability of pathogenicity for each VUS. We explain how the model can be applied to public data and provide tables that list the VUS that have been classified as not pathogenic or pathogenic using this method. While we use BRCA1 and BRCA2 VUS as examples, the method can be used as a framework for classification of the pathogenicity of VUS in other cancer genes.
Members of the breast cancer 1 (BRCA1) carboxy-terminal (BRCT) superfamily are involved in the cellular response to the DNA damage sensing and repair, as well as in the cell cycle control. All proteins are characterized by one or more BRCT domain(s), which provides a flexible framework representing scaffolding element(s) in multi-protein complexes. In particular, BRCA1, nibrin (NBN), and microcephalin (MCPH1), generally considered as molecular models for cancer-prone syndromes, contain BRCT domains able to bind phosphorylated proteins. Mutations within the BRCT domains of BRCA1, NBN, and MCPH1 are responsible for cancer susceptibility, both at the homozygous and heterozygous status. Here, we report a critical analysis of: (i) the BRCT domain structure, (ii) the role of BRCA1, NBN, and MCPH1 in DNA damage sensing and repair as well as in cell cycle control, and (iii) the pathological effects of mutations within the BRCT domains of BRCA1, NBN, and MCPH1.
Current evidence suggests that the genetic risk of breast cancer may be caused primarily by rare variants. However, while classification of protein-truncating mutations as deleterious is relatively straightforward, distinguishing as deleterious or neutral the large number of rare missense variants is a difficult on-going task. In this article, we present one approach to this problem, hierarchical statistical modeling of data observed in a case-control study of contralateral breast cancer (CBC) in which all the participants were genotyped for variants in BRCA1 and BRCA2. Hierarchical modeling permits leverage of information from observed correlations of characteristics of groups of variants with case-control status to infer with greater precision the risks of individual rare variants. A total of 181 distinct rare missense variants were identified among the 705 cases with CBC and the 1,398 controls with unilateral breast cancer. The model identified three bioinformatic hierarchical covariates, align-GV, align-GD, and SIFT scores, each of which was modestly associated with risk. Collectively, the 11 variants that were classified as adverse on the basis of all the three bioinformatic predictors demonstrated a stronger risk signal. This group included five of six missense variants that were classified as deleterious at the outset by conventional criteria. The remaining six variants can be considered as plausibly deleterious, and deserving of further investigation (BRCA1 R866C; BRCA2 G1529R, D2665G, W2626C, E2663V, and R3052W). Hierarchical modeling is a strategy that has promise for interpreting the evidence from future association studies that involve sequencing of known or suspected cancer genes.
BACKGROUND: Besides revealing cancer predisposition variants or the absence of any changes, genetic testing for cancer predisposition genes can also identify variants of uncertain clinical significance (VUS). Classifying VUSs is a pressing problem, as ever more patients seek genetic testing for disease syndromes and receive noninformative results from those tests. In cases such as the breast and ovarian cancer syndrome in which prophylactic options can be severe and life changing, having information on the disease relevance of the VUS that a patient harbors can be critical. METHODS: We describe a computational approach for inferring the disease relevance of VUSs in disease genes from data derived from an in vitro functional assay. It is based on a Bayesian hierarchical model that accounts for sources of experimental heterogeneity. RESULTS: The functional data correlate well with the pathogenicity of BRCA1 BRCT VUSs, thus providing evidence regarding pathogenicity when family and genetic data are absent or uninformative. CONCLUSIONS: We show the utility of the model by using it to classify 76 VUSs located in the BRCT region of BRCA1. The approach is both sensitive and specific when evaluated on variants previously classified using independent sources of data. Although the functional data are very informative, they will need to be combined with other forms of data to meet the more stringent requirements of clinical application. IMPACT: Our work will lead to improved classification of VUSs and will aid in the clinical decision making of their carriers.
Genetic screening of the breast and ovarian cancer susceptibility gene BRCA1 has uncovered a large number of variants of uncertain clinical significance. Here, we use biochemical and cell-based transcriptional assays to assess the structural and functional defects associated with a large set of 117 distinct BRCA1 missense variants within the essential BRCT domain of the BRCA1 protein that have been documented in individuals with a family history of breast or ovarian cancer. In the first method, we used limited proteolysis to assess the protein folding stability of each of the mutants compared with the wild-type. In the second method, we used a phosphopeptide pull-down assay to assess the ability of each of the variants to specifically interact with a peptide containing a pSer-X-X-Phe motif, a known functional target of the BRCA1 BRCT domain. Finally, we used transcriptional assays to assess the ability of each BRCT variant to act as a transcriptional activation domain in human cells. Through a correlation of the assay results with available family history and clinical data, we define limits to predict the disease risk associated with each variant. Forty-two of the variants show little effect on function and are likely to represent variants with little or no clinical significance; 50 display a clear functional effect and are likely to represent pathogenic variants; and the remaining 25 variants display intermediate activities. The excellent agreement between the structure/function effects of these mutations and available clinical data supports the notion that functional and structure information can be useful in the development of models to assess cancer risk.
BRCA1 and BRCA2 screening in women at high-risk of breast cancer results in the identification of both unambiguously defined deleterious mutations and sequence variants of unknown clinical significance (VUS). We examined a population-based sample of young women with contralateral breast cancer (CBC, n=705) or unilateral breast cancer (UBC, n=1398). We identified 470 unique sequence variants, of which 113 were deleterious mutations. The remaining 357 VUS comprised 185 unique missense changes, 60% were observed only once, while 3% occurred with a frequency of >10%. Deleterious mutations occurred three times more often in women with CBC (15.3%) than in women with UBC (5.2%), whereas combined, VUS were observed in similar frequencies in women with CBC and UBC. A protein alignment algorithm defined 16 rare VUS, occurring at highly conserved residues and/or conferring a considerable biochemical difference, the majority located in the BRCA2 DNA-binding domain. We confirm a multiplicity of BRCA1 and BRCA2 VUS that occur at a wide range of allele frequencies. Although some VUS inflict chemical differences at conserved residues, suggesting a deleterious effect, the majority are not associated with an increased risk of CBC.
The breast and ovarian cancer type 1 susceptibility protein (BRCA1) has pivotal roles in the maintenance of genome stability. Studies support that BRCA1 exerts its tumour suppression function primarily through its involvement in cell cycle checkpoint control and DNA damage repair. In addition, recent proteomic and genetic studies have revealed the presence of distinct BRCA1 complexes in vivo, each of which governs a specific cellular response to DNA damage. Thus, BRCA1 is emerging as the master regulator of the genome through its ability to execute and coordinate various aspects of the DNA damage response.
The breast cancer tumor suppressor protein BRCA1 is involved in DNA repair and cell cycle control. Mutations at the two C-terminal tandem (BRCT) repeats of BRCA1 detected in breast tumor patients were identified either to lower the stability of the BRCT domain and/or to disrupt the interaction of BRCT with phoshpopeptides. The aim of this study was to analyze five BRCT pathogenic mutations for their effect on structural integrity and protein stability. For this purpose, the five cancer-associated BRCT mutants: V1696L, M1775K, M1783T, V1809F, and P1812A were cloned in suitable prokaryotic protein production vectors, and the recombinant proteins were purified in soluble and stable form for further biophysical studies. The biophysical analysis of the secondary structure and the thermodynamic stability of the wild-type, wt, and the five mutants of the BRCT domain were performed by Circular Dichroism Spectroscopy (CD) and Differential Scanning Microcalorimetry (DSC), respectively. The binding capacity of the wt and mutant BRCT with (pBACH1/BRIP1) and pCtIP were measured by Isothermal Titration Calorimetry (ITC). The experimental results demonstrated that the five mutations of the BRCT domain: (i) affected the thermal unfolding temperature as well as the unfolding enthalpy of the domain, to a varying degree depending upon the induced destabilization and (ii) altered and/or abolished their affinity to synthetic pBACH1/BRIP1 and pCtIP phosphopeptides by affecting the structural integrity of the BRCT active sites. The presented experimental results are one step towards the elucidation of the effect of various missense mutations on the structure and function of BRCA1-BRCT.
BACKGROUND: Despite significant differences in age of onset and incidence of breast cancer between Caucasian (CA), African-American (AA) and Korean (KO) women, little is known about differences in BRCA1/2 mutations in these populations. The purpose of this study is to evaluate the prevalence of BRCA1/2 mutations and the association between BRCA1/2 mutation status and secondary malignancies among young women with breast cancer in these three racially diverse groups. METHODS: Patients presenting to our breast cancer follow-up clinics selected solely on having a known breast cancer diagnosis at a young age (YBC defined as age <45 years at diagnosis) were invited to participate in this study. A total of 333 eligible women, 166 CA, 66 AA and 101 KO underwent complete sequencing of BRCA1/2 genes. Family history (FH) was classified as negative, moderate or strong. BRCA1/2 status was classified as wild type (WT), variant of uncertain significance (VUS) or deleterious (DEL). RESULTS: DEL across these three racially diverse populations of YBC were nearly identical: CA 17%, AA 14% and KO 14%. The type of DEL differed with AA having more frequent mutations in BRCA2, compared with CA and KO. VUS were predominantly in BRCA2 and AA had markedly higher frequency of VUS (38%) compared with CA (10%) and KO (12%). At 10-year follow-up from the time of initial diagnosis of breast cancer, the risk of secondary malignancies was similar among WT (14%) and VUS (16%), but markedly higher among DEL (39%). CONCLUSIONS: In these YBC, the frequency of DEL in BRCA1/2 is remarkably similar among the racially diverse groups at 14%-17%. VUS is more common in AA, but aligns closely with WT in risk of second cancers, age of onset and FH.
BACKGROUND: In women at increased risk for breast and ovarian cancer, the identification of a mutation in breast cancer gene 1 (BRCA1) and BRCA2 has important implications for screening and prevention counseling. Uncertainty regarding the role of BRCA1 and BRCA2 testing in high-risk women from diverse ancestral backgrounds exists because of variability in prevalence estimates of deleterious (disease-associated) mutations in non-white populations. In this study, the authors examined the prevalence of BRCA1 and BRCA2 mutations in an ethnically diverse group of women who were referred for genetic testing. METHODS: In this cross-sectional analysis, the prevalence of BRCA1 and BRCA2 mutations was assessed in a group of non-Ashkenazi Jewish women who underwent genetic testing. RESULTS: From 1996 to 2006, 46,276 women who met study criteria underwent DNA full-sequence analysis of the BRCA1 and BRCA2 genes. Deleterious mutations were identified in 12.5% of women, and recurrent deleterious mutations (prevalence >2%) were identified in all ancestral groups. Women of non-European descent were younger (mean age, 45.9 years; standard deviation [SD], 11.6 years) than European women (mean age, 50 years; SD, 11.9 years; P < .001). Women of African (15.6%; odds ratio [OR], 1.3 [95% confidence interval (95% CI), 1.1-1.5]) and Latin American (14.8%; OR, 1.2 [95% CI, 1.1-1.4]) ancestries had a significantly higher prevalence of deleterious BRCA1 and BRCA2 mutations compared with women of Western European ancestry (12.1%), primarily because of an increased prevalence of BRCA1 mutations in those 2 groups. Non-European ethnicity was associated strongly with having a variant of uncertain significance; however, reclassification decreased variant reporting (from 12.8%-->5.9%), and women of African ancestry experienced the largest decline (58%). CONCLUSIONS: Mutation prevalence was found to be high among women who were referred for clinical BRCA1 and BRCA2 testing, and the risk was similar across diverse ethnicities. BRCA1 and BRCA2 testing is integral to cancer risk assessment in all high-risk women.
Mutations in breast cancer susceptibility gene 1 and 2 (BRCA1 and BRCA2) predispose individuals to breast and ovarian cancer development. We previously reported an in vivo interaction between BRCA1 and BRCA2. However, the biological significance of their association is thus far undefined. Here, we report that PALB2, the partner and localizer of BRCA2, binds directly to BRCA1, and serves as the molecular scaffold in the formation of the BRCA1-PALB2-BRCA2 complex. The association between BRCA1 and PALB2 is primarily mediated via apolar bonding between their respective coiled-coil domains. More importantly, BRCA1 mutations identified in cancer patients disrupted the specific interaction between BRCA1 and PALB2. Consistent with the converging functions of the BRCA proteins in DNA repair, cells harboring mutations with abrogated BRCA1-PALB2 interaction resulted in defective homologous recombination (HR) repair. We propose that, via its direct interaction with PALB2, BRCA1 fine-tunes recombinational repair partly through its modulatory role in the PALB2-dependent loading of BRCA2-RAD51 repair machinery at DNA breaks. Our findings uncover PALB2 as the molecular adaptor between the BRCA proteins, and suggest that impaired HR repair is one of the fundamental causes for genomic instability and tumorigenesis observed in patients carrying BRCA1, BRCA2, or PALB2 mutations.
Germline mutations that inactivate BRCA1 are responsible for breast and ovarian cancer susceptibility. One possible outcome of genetic testing for BRCA1 is the finding of a genetic variant of uncertain significance for which there is no information regarding its cancer association. This outcome leads to problems in risk assessment, counseling and preventive care. The purpose of the present study was to functionally evaluate seven unclassified variants of BRCA1 including a genomic deletion that leads to the in-frame loss of exons 16/17 (Delta exons 16/17) in the mRNA, an insertion that leads to a frameshift and an extended carboxy-terminus (5673insC), and five missense variants (K1487R, S1613C, M1652I, Q1826H and V1833M). We analyzed the variants using a functional assay based on the transcription activation property of BRCA1 combined with supervised learning computational models. Functional analysis indicated that variants S1613C, Q1826H, and M1652I are likely to be neutral, whereas variants V1833M, Delta exons 16/17, and 5673insC are likely to represent deleterious variants. In agreement with the functional analysis, the results of the computational analysis also indicated that the latter three variants are likely to be deleterious. Taken together, a combined approach of functional and bioinformatics analysis, plus structural modeling, can be utilized to obtain valuable information pertaining to the effect of a rare variant on the structure and function of BRCA1. Such information can, in turn, aid in the classification of BRCA1 variants for which there is a lack of genetic information needed to provide reliable risk assessment.
The BRCA1 tumor suppressor gene is found mutated in familial breast cancer. Although many of the mutations are clearly pathological because they give rise to truncated proteins, several missense variants of uncertain pathological consequences have been identified. A novel functional assay to screen for BRCA1 missense variants in a simple genetic system could be very useful for the identification of potentially deleterious mutations. By using two prediction computer programs, Sorting Intolerant from Tolerant (SIFT) and Polymorphism Phenotyping (PolyPhen), seven nonsynonymous missense BRCA1 variants likely disrupting the gene function were selected as potentially deleterious. The budding yeast Saccharomyces cerevisiae (S. cerevisiae) was used to test these cancer-related missense mutations for their ability to affect cell growth and homologous recombination (HR) at the HIS3 and ADE2 loci. The variants localized in the BRCA1 C-Terminus (BRCT) domain did not show any growth inhibition when overexpressed in agreement with previous results. Overexpression of either wild-type BRCA1 or two neutral missense variants did not increase yeast HR but when cancer-related variants were overexpressed a significant increase in recombination was observed. Results clearly showed that this genetic system can be useful to discriminate between neutral and deleterious BRCA1 missense variants.
A number of germ-line mutations in the BRCA1 gene confer susceptibility to breast and ovarian cancer. However, it remains difficult to determine whether many single amino-acid (missense) changes in the BRCA1 protein that are frequently detected in the clinical setting are pathologic or not. Here, we used a combination of functional, crystallographic, biophysical, molecular and evolutionary techniques, and classical genetic segregation analysis to demonstrate that the BRCA1 missense variant M1775K is pathogenic. Functional assays in yeast and mammalian cells showed that the BRCA1 BRCT domains carrying the amino-acid change M1775K displayed markedly reduced transcriptional activity, indicating that this variant represents a deleterious mutation. Importantly, the M1775K mutation disrupted the phosphopeptide-binding pocket of the BRCA1 BRCT domains, thereby inhibiting the BRCA1 interaction with the proteins BRIP1 and CtIP, which are involved in DNA damage-induced checkpoint control. These results indicate that the integrity of the BRCT phosphopeptide-binding pocket is critical for the tumor suppression function of BRCA1. Moreover, this study demonstrates that multiple lines of evidence obtained from a combination of functional, structural, molecular and evolutionary techniques, and classical genetic segregation analysis are required to confirm the pathogenicity of rare variants of disease-susceptibility genes and obtain important insights into the underlying pathogenetic mechanisms.
Breast cancer-associated mutations affecting the highly-conserved C-terminal BRCT domains of the tumor suppressor gene breast cancer susceptibility gene 1 (BRCA1) fully disrupt the ability of BRCA1 to interact with acetyl coenzyme A carboxylase alpha (ACCA), the rate-limiting enzyme catalyzing de novo fatty acid biogenesis. Specifically, BRCA1 interacts solely with the phosphorylated (inactive) form of ACCA (P-ACCA), and the formation of the BRCA1/P-ACCA complex interferes with ACCA activity by preventing P-ACCA dephosphorylation. One of the hallmarks of aggressive cancer cells is a high rate of energy-consuming anabolic processes driving the synthesis of lipids, proteins, and DNA (all of which are regulated by the energy status of the cell). The ability of BRCA1 to stabilize the phosphorylated/inactive form of ACCA strongly suggests that the tumor suppressive function of BRCA1 closely depends on its ability to mimic a cellular-low-energy status, which is known to block tumor cell anabolism and suppress the malignant phenotype. Interestingly, physical exercise and lack of obesity in adolescence have been associated with significantly delayed breast cancer onset for Ashkenazi Jewish women carrying BRCA1 gene mutations. Further clinical work may explore a chemopreventative role of "low-energy-mimickers" deactivating the ACCA-driven "lipogenic phenotype" in women with inherited mutations in BRCA1. This goal might be obtained with current therapeutic approaches useful in treating the metabolic syndrome and associated disorders in humans (e.g., type 2 diabetes and obesity), including metformin, thiazolidinediones (TZDs), calorie deprivation, and exercise. Alternatively, new forthcoming ACCA inhibitors may be relevant in the management of BRCA1-dependent breast cancer susceptibility and development.
CONTEXT: The risk of breast cancer in BRCA1 and BRCA2 mutation carriers has been examined in many studies, but relatively little attention has been paid to the degree to which the risk may vary among carriers. OBJECTIVES: To determine the extent to which risks for BRCA1 and BRCA2 carriers vary with respect to observable and unobservable characteristics. DESIGN, SETTING, AND PARTICIPANTS: Probands were identified from a population-based, case-control study (Women's Environmental Cancer and Radiation Epidemiology [WECARE]) of asynchronous contralateral breast cancer conducted during the period of January 2000 to July 2004. Participants previously diagnosed with contralateral breast cancer or unilateral breast cancer were genotyped for mutations in BRCA1 and BRCA2. All participants had their initial breast cancer diagnosed during the period of January 1985 to December 2000, before the age of 55 years. MAIN OUTCOME MEASURE: Incidence of breast cancer in first-degree female relatives of the probands was examined and compared on the basis of proband characteristics and on the basis of variation between families. RESULTS: Among the 1394 participants with unilateral breast cancer, 73 (5.2%) were identified as carriers of deleterious mutations (42 with BRCA1 and 31 with BRCA2). Among the 704 participants with contralateral breast cancer, 108 (15.3%) were identified as carriers of deleterious mutations (67 with BRCA1 and 41 with BRCA2). Among relatives of carriers, risk was significantly associated with younger age at diagnosis in the proband (P = .04), and there was a trend toward higher risk for relatives of contralateral breast cancer vs unilateral breast cancer participants (odds ratio, 1.4 [95% confidence interval, 0.8-2.4]; P = .28). In addition, there were significant differences in risk between carrier families after adjusting for these observed characteristics. CONCLUSION: There exists broad variation in breast cancer risk among carriers of BRCA1 and BRCA2 mutations.
BACKGROUND: Alterations in the highly penetrant cancer susceptibility gene BRCA1 are responsible for the majority of hereditary breast and/or ovarian cancers. However, the number of detected germline mutations has been lower than expected based upon genetic linkage data. Undetected deleterious mutations in the BRCA1 gene in some high-risk families could be due to the presence of intragenic rearrangements as deletions, duplications or insertions spanning whole exons. Standard PCR-based screening methods are mainly focused on detecting point mutations and small insertions/deletions, but large rearrangements might escape detection.The purpose of this study was to determine the type and frequency of large genomic rearrangements in the BRCA1 gene in hereditary breast and ovarian cancer cases in the Czech Republic. METHODS: Multiplex ligation-dependent probe amplification (MLPA) was used to examine BRCA1 rearrangements in 172 unrelated patients with hereditary breast and/or ovarian cancer syndrome without finding deleterious mutation after complete screening of whole coding regions of BRCA1/2 genes. Positive MLPA results were confirmed and located by long-range PCR. The breakpoints of detected rearrangements were characterized by sequencing. RESULTS: Six different large deletions in the BRCA1 gene were identified in 10 out of 172 unrelated high-risk patients: exons 1A/1B and 2 deletion; partial deletion of exon 11 and exon 12; exons 18 and 19 deletion; exon 20 deletion; exons 21 and 22 deletion; and deletion of exons 5 to 14. The breakpoint junctions were localized and further characterized. Destabilization and global unfolding of the mutated BRCT domains explain the molecular and genetic defects associated with the exon 20 in-frame deletion and the exon 21 and 22 in-frame deletion, respectively. CONCLUSION: Using MLPA, mutations were detected in 6% of high-risk patients previously designated as BRCA1/2 mutation-negative. The breakpoints of five out of six large deletions detected in Czech patients are novel. Screening for large genomic rearrangements in the BRCA1 gene in the Czech high-risk patients is highly supported by this study.
Missense mutations at the BRCT domain of human BRCA1 protein have been associated with an elevated risk for hereditary breast/ovarian cancer. They have been shown to affect the binding site and they have also been proposed to affect domain stability, severely hampering the protein's tumor suppressor function. In order to assess the impact of various such mutations upon the stability and the function of the BRCT domain, heat-induced denaturation has been employed to study the thermal unfolding of variants M1775R and R1699W, which have been linked with the disease, as well as of V1833M, which has been reported for patients with a family history. Calorimetric and circular dichroism results reveal that in pH 9.0, 5 mM borate buffer, 200 mM NaCl, analogously to wild type BRCT, all three variants undergo partial thermal unfolding to a denatured state, which retains most of the native's structural characteristics. With respect to wild-type BRCT, the mutation M1775R induces the most severe effects especially upon the thermostability, while R1699W also has a strong impact. On the other hand, the thermal unfolding of variant V1833M is only moderately affected relative to wild-type BRCT. Moreover, isothermal titration calorimetric measurements reveal that contrary to M1775R and R1699W variants, V1833M binds to BACH1 and CtIP phosphopeptides.
Germ line inactivating mutations in BRCA1 confer susceptibility for breast and ovarian cancer. However, the relevance of the many missense changes in the gene for which the effect on protein function is unknown remains unclear. Determination of which variants are causally associated with cancer is important for assessment of individual risk. We used a functional assay that measures the transactivation activity of BRCA1 in combination with analysis of protein modeling based on the structure of BRCA1 BRCT domains. In addition, the information generated was interpreted in light of genetic data. We determined the predicted cancer association of 22 BRCA1 variants and verified that the common polymorphism S1613G has no effect on BRCA1 function, even when combined with other rare variants. We estimated the specificity and sensitivity of the assay, and by meta-analysis of 47 variants, we show that variants with <45% of wild-type activity can be classified as deleterious whereas variants with >50% can be classified as neutral. In conclusion, we did functional and structure-based analyses on a large series of BRCA1 missense variants and defined a tentative threshold activity for the classification missense variants. By interpreting the validated functional data in light of additional clinical and structural evidence, we conclude that it is possible to classify all missense variants in the BRCA1 COOH-terminal region. These results bring functional assays for BRCA1 closer to clinical applicability.
Genetic testing for the two major breast cancer susceptibility genes has now been available for several years with more than 70,000 people tested in the USA alone. While the current genetic testing identifies many sequence alterations there are problems with both sensitivity and specificity of the assay. In particular, the genetic testing is limited in its ability to determine which of the many missense mutations identified in BRCA1 and BRCA2 actually predispose to cancer and which are simply neutral alterations. Here we will focus on the limitations in test result interpretation and we will explore how biochemistry and cell biology can help to clarify these issues. Although we limit our discussion to genetic testing of BRCA1 and BRCA2, the problem is common to an expanding group of genes, including ATM and MSH2, in which germ-line missense mutations may also confer increased risk of cancer. Here we advocate the use of functional assays to complement genetic data in the analysis of unclassified missense mutations and propose a set of standards to conduct and interpret these assays.
Cancer-associated mutations in the BRCT domain of BRCA1 (BRCA1-BRCT) abolish its tumor suppressor function by disrupting interactions with other proteins such as BACH1. Many cancer-related mutations do not cause sufficient destabilization to lead to global unfolding under physiological conditions, and thus abrogation of function probably is due to localized structural changes. To explore the reasons for mutation-induced loss of function, the authors performed molecular dynamics simulations on three cancer-associated mutants, A1708E, M1775R, and Y1853ter, and on the wild type and benign M1652I mutant, and compared the structures and fluctuations. Only the cancer-associated mutants exhibited significant backbone structure differences from the wild-type crystal structure in BACH1-binding regions, some of which are far from the mutation sites. Backbone differences of the A1708E mutant from the liganded wild type structure in these regions are much larger than those of the unliganded wild type X-ray or molecular dynamics structures. These BACH1-binding regions of the cancer-associated mutants also exhibited increases in their fluctuation magnitudes compared with the same regions in the wild type and M1562I mutant, as quantified by quasiharmonic analysis. Several of the regions of increased fluctuation magnitude correspond to correlated motions of residues in contact that provide a continuous path of fluctuating amino acids in contact from the A1708E and Y1853ter mutation sites to the BACH1-binding sites with altered structure and dynamics. The increased fluctuations in the disease-related mutants suggest an increase in vibrational entropy in the unliganded state that could result in a larger entropy loss in the disease-related mutants upon binding BACH1 than in the wild type. To investigate this possibility, vibrational entropies of the A1708E and wild type in the free state and bound to a BACH1-derived phosphopeptide were calculated using quasiharmonic analysis, to determine the binding entropy difference DeltaDeltaS between the A1708E mutant and the wild type. DeltaDeltaS was determined to be -4.0 cal mol(-1) K(-1), with an uncertainty of 2 cal mol(-1) K(-1); that is, the entropy loss upon binding the peptide is 4.0 cal mol(-1) K(-1) greater for the A1708E mutant, corresponding to an entropic contribution to the DeltaDeltaG of binding (-TDeltaDeltaS) 1.1 kcal mol(-1) more positive for the mutant. The observed differences in structure, flexibility, and entropy of binding likely are responsible for abolition of BACH1 binding, and illustrate that many disease- related mutations could have very long-range effects. The methods described here have potential for identifying correlated motions responsible for other long-range effects of deleterious mutations.
BRCA1 is a large protein that exhibits a multiplicity of functions in its apparent role in DNA repair. Certain mutations of BRCA1 are known to have exceptionally high penetrance with respect to familial breast and ovarian cancers. The structures of the N-terminus and C-terminus of the protein have been determined. The C-terminus unit consists of two alpha-beta-alpha domains designated BRCT. We predicated two homologous BRCT regions in the BRCA1 internal region, and subsequently produced and purified these protein domains. Both recombinant domains show significant self-association capabilities as well as a preferential tendency to interact with each other. These results suggest a possible regulatory mechanism for BRCA1 function. We have demonstrated p53-binding activity by an additional region, and confirmed previous results showing that two regions of BRCA1 protein bind p53 in vitro. Based on sequence analysis, we predict five p53-binding sites. Our comparison of binding by wild-type and mutant domains indicates the sequence specificity of BRCA1-p53 interaction.
A novel methodology to predict the local conformational changes in a protein as a consequence of missense mutations is proposed. A pentapeptide at the locus of mutation plays the dominant role and it is analyzed in terms of tripeptides. A measure for spatial and temporal fluctuations in a pentapeptide is devised and validated. The method does not involve any prior knowledge of structural templates from sequence homology studies. Structural deformations can be predicted with about 70-80% reliability in any protein. Disease causing mutations and benign mutations have been addressed. In particular, p53, retinoblastoma protein and lipoprotein lipase are studied in detail.
BACKGROUND: The vast majority of BRCA1 missense sequence variants remain uncharacterized for their possible effect on protein expression and function, and therefore are unclassified in terms of their pathogenicity. BRCA1 plays diverse cellular roles and it is unlikely that any single functional assay will accurately reflect the total cellular implications of missense mutations in this gene. OBJECTIVE: To elucidate the effect of two BRCA1 variants, 5236G>C (G1706A) and 5242C>A (A1708E) on BRCA1 function, and to survey the relative usefulness of several assays to direct the characterisation of other unclassified variants in BRCA genes. METHODS AND RESULTS: Data from a range of bioinformatic, genetic, and histopathological analyses, and in vitro functional assays indicated that the 1708E variant was associated with the disruption of different cellular functions of BRCA1. In transient transfection experiments in T47D and 293T cells, the 1708E product was mislocalised to the cytoplasm and induced centrosome amplification in 293T cells. The 1708E variant also failed to transactivate transcription of reporter constructs in mammalian transcriptional transactivation assays. In contrast, the 1706A variant displayed a phenotype comparable to wildtype BRCA1 in these assays. Consistent with functional data, tumours from 1708E carriers showed typical BRCA1 pathology, while tumour material from 1706A carriers displayed few histopathological features associated with BRCA1 related tumours. CONCLUSIONS: A comprehensive range of genetic, bioinformatic, and functional analyses have been combined for the characterisation of BRCA1 unclassified sequence variants. Consistent with the functional analyses, the combined odds of causality calculated for the 1706A variant after multifactorial likelihood analysis (1:142) indicates a definitive classification of this variant as "benign". In contrast, functional assays of the 1708E variant indicate that it is pathogenic, possibly through subcellular mislocalisation. However, the combined odds of 262:1 in favour of causality of this variant does not meet the minimal ratio of 1000:1 for classification as pathogenic, and A1708E remains formally designated as unclassified. Our findings highlight the importance of comprehensive genetic information, together with detailed functional analysis for the definitive categorisation of unclassified sequence variants. This combination of analyses may have direct application to the characterisation of other unclassified variants in BRCA1 and BRCA2.
The C-terminal, BRCT repeats of BRCA1 are essential for the tumor suppressor function of this protein. Here we review structural and functional studies of this domain. Both repeats adopt similar folds and pack in an intimate, head-to-tail manner. The domain binds phosphorylated targets such as the DNA damage-associated kinase BACH1, with a specificity for pSer-X-X-Phe motifs. Structural studies reveal that the N-terminal repeat is responsible for pSer binding while a groove at the interface of the two repeats recognizes the Phe. Missense variants identified in breast cancer screening programs often disrupt these interactions and these molecular defects may lead to an increased cancer risk.
The response of eukaryotic cells to DNA damage requires a multitude of protein-protein interactions that mediate the ordered repair of the damage and the arrest of the cell cycle until repair is complete. Two conserved protein modules, BRCT and forkhead-associated (FHA) domains, play key roles in the DNA-damage response as recognition elements for nuclear Ser/Thr phosphorylation induced by DNA-damage-responsive kinases. BRCT domains, first identified at the C-terminus of BRCA1, often occur as multiple tandem repeats of individual BRCT modules. Our recent structural and functional work has revealed how BRCT repeats recognize phosphoserine protein targets. It has also revealed a secondary binding pocket at the interface between tandem repeats, which recognizes the amino-acid 3 residues C-terminal to the phosphoserine. We have also studied the molecular function of the FHA domain of the DNA repair enzyme, polynucleotide kinase (PNK). This domain interacts with threonine-phosphorylated XRCC1 and XRCC4, proteins responsible for the recruitment of PNK to sites of DNA-strand-break repair. Our studies have revealed a flexible mode of recognition that allows PNK to interact with numerous negatively charged substrates.
This work describes an approach to characterize the clinical significance of genetic variants detected during the genetic testing of BRCA1 in patients from hereditary breast/ovarian cancer families. Results from transgenic mice and extensive clinical testing support the hypothesis that biallelic BRCA1 mutations result in embryonic lethality. Therefore, it is reasonable to conclude that variants of uncertain clinical significance found to reside in trans with known deleterious mutations impart reduced risk for cancer. This approach was applied to a large data set of 55,630 patients who underwent clinical BRCA1 screening by whole gene direct DNA sequencing. Fourteen common single nucleotide polymorphisms (SNPs) were used to assign 10 previously defined common, recurrent, or canonical haplotypes in 99% of these cases. From a total of 1,477 genetic variants detected in these patients, excluding haplotype-tagging SNPs, 877 (59%) could be unambiguously assigned to one or more haplotypes. In 41 instances, variants previously classified as being of uncertain clinical significance, mostly missense variants, were excluded as fully penetrant mutations due to their coincidence in trans with known deleterious mutations. From a total of 1,150 patients that harbored these 41 variants, 956 carried one as the sole variant of uncertain clinical significance reported. This approach could have widespread application to other disease genes where compound heterozygous mutations are incompatible with life or result in obvious phenotypes. This largely computational technique is advantageous because it relies upon existing clinical data and is likely to prove informative for prevalent genetic variants in large data sets.
The subcellular location and function of many proteins are regulated by nuclear-cytoplasmic shuttling. BRCA1 and BARD1 provide an interesting model system for understanding the influence of protein dimerization on nuclear transport and localization. These proteins function predominantly in the nucleus to regulate cell cycle progression, DNA repair/recombination and gene transcription, and their export to the cytoplasm has been linked to apoptosis. Germ-line mutations in the BRCA1/BRCA2 and BARD1 genes predispose to risk of breast/ovarian cancer, and certain mutations impair protein function and nuclear accumulation. BRCA1 and BARD1 shuttle between the nucleus and cytoplasm; however heterodimerization masks the nuclear export signals located within each protein, causing nuclear retention of the BRCA1-BARD1 complex and potentially influencing its role in DNA repair, cell survival and regulation of centrosome duplication. This review discusses BRCA1, BRCA2 and BARD1 subcellular localization with emphasis on regulation of transport by protein dimerization and its functional implications.
The breast and ovarian tumor suppressor BRCA1 has important functions in cell cycle checkpoint control and DNA repair. Two tandem BRCA1 C-terminal (BRCT) domains are essential for the tumor suppression activity of BRCA1 and interact in a phosphorylation-dependent manner with proteins involved in DNA damage-induced checkpoint control, including the DNA helicase BACH1 and the CtBP-interacting protein (CtIP). The crystal structure of the BRCA1 BRCT repeats bound to the PTRVSpSPVFGAT phosphopeptide corresponding to residues 322-333 of human CtIP was determined at 2.5 A resolution. The peptide binds to a cleft formed by the interface of the two BRCTs in a two-pronged manner, with phospho-Ser327 and Phe330 anchoring the peptide through extensive contacts with BRCA1 residues. Several hydrogen bonds and salt bridges that stabilize the BRCA1-BACH1 complex are missing in the BRCA1-CtIP interaction, offering a structural basis for the approximately 5-fold lower affinity of BRCA1 for CtIP compared to that of BACH1, as determined by isothermal titration calorimetry. Importantly, the side chain of Arg1775 in the cancer-associated BRCA1 mutation M1775R sterically clashes with the phenyl ring of CtIP Phe330, disrupting the BRCA1-CtIP interaction. These results provide new insights into the molecular mechanisms underlying the dynamic selection of target proteins involved in DNA repair and cell cycle control by BRCA1 and reveal how certain cancer-associated mutations affect these interactions.
Reduced stability of the tandem BRCT domains of human BReast CAncer 1 (BRCA1) due to missense mutations may be critical for loss of function in DNA repair and damage-induced checkpoint control. In the present thermal denaturation study of the BRCA1 BRCT region, high-precision differential scanning calorimetry (DSC) and circular dichroism (CD) spectroscopy provide evidence for the existence of a denatured state that is structurally very similar to the native. Consistency between theoretical structure-based estimates of the enthalpy (DeltaH) and heat capacity change (DeltaCp) and the calorimetric results is obtained when considering partial thermal unfolding contained in the region of the conserved hydrophobic pocket formed at the interface of the two BRCT repeats. The structural integrity of this region has been shown to be crucial for the interaction of BRCA1 with phosphorylated peptides. In addition, cancer-causing missense mutations located at the inter-BRCT-repeat interface have been linked to the destabilization of the tandem BRCT structure.
BACKGROUND: BRCA1 is a tumour suppressor with pleiotropic actions. Germline mutations in BRCA1 are responsible for a large proportion of breast-ovarian cancer families. Several missense variants have been identified throughout the gene but because of lack of information about their impact on the function of BRCA1, predictive testing is not always informative. Classification of missense variants into deleterious/high risk or neutral/low clinical significance is essential to identify individuals at risk. OBJECTIVE: To investigate a panel of missense variants. METHODS AND RESULTS: The panel was investigated in a comprehensive framework that included (1) a functional assay based on transcription activation; (2) segregation analysis and a method of using incomplete pedigree data to calculate the odds of causality; (3) a method based on interspecific sequence variation. It was shown that the transcriptional activation assay could be used as a test to characterise mutations in the carboxy-terminus region of BRCA1 encompassing residues 1396-1863. Thirteen missense variants (H1402Y, L1407P, H1421Y, S1512I, M1628T, M1628V, T1685I, G1706A, T1720A, A1752P, G1788V, V1809F, and W1837R) were specifically investigated. CONCLUSIONS: While individual classification schemes for BRCA1 alleles still present limitations, a combination of several methods provides a more powerful way of identifying variants that are causally linked to a high risk of breast and ovarian cancer. The framework presented here brings these variants nearer to clinical applicability.
Clinical management of individuals found to harbor a mutation at a known disease-susceptibility gene depends on accurate assessment of mutation-specific disease risk. For missense mutations (MMs)-mutations that lead to a single amino acid change in the protein coded by the gene-this poses a particularly challenging problem. Because it is not possible to predict the structural and functional changes to the protein product for a given amino acid substitution, and because functional assays are often not available, disease association must be inferred from data on individuals with the mutation. Inference is complicated by small sample sizes and by sampling mechanisms that bias toward individuals at high familial risk of disease. We propose a Bayesian hierarchical model to classify the disease association of MMs given pedigree data collected in the high-risk setting. The model's structure allows simultaneous characterization of multiple MMs. It uses a group of pedigrees identified through probands tested positive for known disease associated mutations and a group of test-negative pedigrees, both obtained from the same clinic, to calibrate classification and control for potential ascertainment bias. We apply this model to study MMs of breast-ovarian susceptibility genes BRCA1 and BRCA2, using data collected at the Duke University Medical Center in Durham, North Carolina.
BRCA1 is a tumor suppressor protein associated with breast and ovarian cancer. The C-terminal region of BRCA1 consists of two closely spaced BRCT domains which mediate essential biological functions, including regulation of transcription and control of cell-cycle progression by their interaction with phosphorylated effector proteins. Here we report the NMR structure of the isolated C-terminal BRCT domain (BRCT-c) from human BRCA1. BRCT-c is well-structured in solution, folding independently in the absence of its BRCT-n counterpart. Ultracentrifugation experiments and size exclusion chromatography reveal that BRCT-c exists as a monomer under near-physiological conditions. Dynamics measurements from NMR data show three loops which coincide with the most variable sequence regions in BRCT domains, to be genuinely flexible in solution. The solution structure of BRCT-c shows subtle conformational changes when compared to the crystal structure of BRCT-c in the tandem repeat of BRCA1. These affect sites involved in formation of the BRCT-n-BRCT-c interface and the binding to phosphoserine-containing peptides. The results suggest that the presence of native BRCT-n and a properly aligned BRCT-n-BRCT-c interface are essential if BRCT-c is to adopt a biologically active conformation. Structural consequences of cancer-associated mutations and biological implications of the dynamic behavior are discussed.
Many families with multiple cases of ovarian cancer, breast cancer, or both segregate inherited mutations in one allele of the tumor suppressor gene BRCA1. Genetic testing is used to assess cancer risk; however, testing can detect missense DNA alterations, called unclassified variants, of unknown functional and biological significance with uncertain risk implications. Some missense variants at the transcriptional activation domain of BRCA1 of cancer patients inactivate transcriptional activity of BRCA1, providing evidence that they are deleterious. We identified the variants V1804D and M1628T at the transcriptional activation domain of BRCA1 of two ovarian cancer patients without a family history of ovarian or breast cancer. To test if these residues are critical for transcriptional activation, we created V1804D and M1628T independently in BRCA1 cDNA via site-directed mutagenesis in a mammalian expression vector, pcDNA3.1. Wild-type, mutant, and empty vector constructs were tested in human kidney 293 cells using a p53-responsive luciferase reporter. M1628T had the same transcriptional activity as wild-type BRCA1 but V1804D and the empty vector control showed a 60% reduction. This indicates that V1804D is deleterious but M1628T is not.
A high incidence of breast and ovarian cancers has been linked to mutations in the BRCA1 gene. BRCA1 has been shown to be involved in both positive and negative regulation of gene activity as well as in numerous other processes such as DNA repair and cell cycle regulation. Since modulation of the RNA polymerase II carboxy-terminal domain (CTD) phosphorylation levels could constitute an interface to all these functions, we wanted to directly test the possibility that BRCA1 might regulate the phosphorylation state of the CTD. We have shown that the BRCA1 C-terminal region can negatively modulate phosphorylation levels of the RNA polymerase II CTD by the Cdk-activating kinase (CAK) in vitro. Interestingly, the BRCA1 C-terminal region can directly interact with CAK and inhibit CAK activity by competing with ATP. Finally, we demonstrated that full-length BRCA1 can inhibit CTD phosphorylation when introduced in the BRCA1(-/-) HCC1937 cell line. Our results suggest that BRCA1 could play its ascribed roles, at least in part, by modulating CTD kinase components.
BRCT tandem domains, found in many proteins involved in DNA damage checkpoint and DNA repair pathways, were recently shown to be phosphopeptide binding motifs. Using solution nuclear magnetic resonance (NMR) spectroscopy and mutational analysis, we have characterized the interaction of BRCA1-BRCT domains with a phosphoserine-containing peptide derived from the DNA repair helicase BACH1. We show that a phenylalanine in the +3 position from the phosphoserine of BACH1 is bound to a conserved hydrophobic pocket formed between the two BRCT domains and that recognition of the phosphate group is mediated by lysine and serine side chains from the amino-terminal BRCT domain. Mutations that prevent phosphopeptide binding abolish BRCA1 function in DNA damage-induced checkpoint control. Our NMR data also reveal a dynamic interaction between BRCA1-BRCT and BACH1, where the bound phosphopeptide exists as an equilibrium of two conformations and where BRCA1-BRCT undergoes a transition to a more rigid conformation upon peptide binding.
INTRODUCTION: Interpretation of results from mutation screening of tumour suppressor genes known to harbour high risk susceptibility mutations, such as APC, BRCA1, BRCA2, MLH1, MSH2, TP53, and PTEN, is becoming an increasingly important part of clinical practice. Interpretation of truncating mutations, gene rearrangements, and obvious splice junction mutations, is generally straightforward. However, classification of missense variants often presents a difficult problem. From a series of 20,000 full sequence tests of BRCA1 carried out at Myriad Genetic Laboratories, a total of 314 different missense changes and eight in-frame deletions were observed. Before this study, only 21 of these missense changes were classified as deleterious or suspected deleterious and 14 as neutral or of little clinical significance. METHODS: We have used a combination of a multiple sequence alignment of orthologous BRCA1 sequences and a measure of the chemical difference between the amino acids present at individual residues in the sequence alignment to classify missense variants and in-frame deletions detected during mutation screening of BRCA1. RESULTS: In the present analysis we were able to classify an additional 50 missense variants and two in-frame deletions as probably deleterious and 92 missense variants as probably neutral. Thus we have tentatively classified about 50% of the unclassified missense variants observed during clinical testing of BRCA1. DISCUSSION: An internal test of the analysis is consistent with our classification of the variants designated probably deleterious; however, we must stress that this classification is tentative and does not have sufficient independent confirmation to serve as a clinically applicable stand alone method.
Inherited missense mutations in the tumor suppressor gene, BRCA-1, may predispose to breast or ovarian cancer, but the exact effects on the protein are generally unknown. The COOH-terminal region of BRCA-1 encodes two BRCT repeats, which are partially conserved in mammalian species (human, dog, rat, and mouse; 60% amino acid identity). A bioinformatic analysis was conducted to evaluate 246 BRCT missense mutations from high-risk breast and/or ovarian cancer patients (reported in the NIH Breast Cancer Information Core database). It was hypothesized that amino acids conserved in evolution would be disproportionately targeted by the mutations and that conserved amino acids with strongly hydrophobic side chains would be disproportionately perturbed. A statistical model was developed, and chi(2) tests were used to determine whether missense mutations are randomly distributed throughout the BRCT repeats or whether they disproportionately target certain amino acids. The results showed that missense mutations disproportionately target amino acids that are identical in all four mammals (chi(2) = 46.01, P < 0.001). In addition, missense mutations disproportionately perturb conserved amino acids with strongly hydrophobic side chains (chi(2) = 68.57, P < 0.001) and alter the strongly hydrophobic property. The two most frequently observed known cancer-predisposing missense mutations in the BRCT repeats, M1775R and A1708E, conform to this pattern. These results suggest that missense mutations affecting highly conserved amino acids with strongly hydrophobic side chains can disturb important features of the BRCA-1 protein and may play a role in breast and ovarian cancer formation.
Germline mutations in the BRCA1 tumor suppressor gene often result in a significant increase in susceptibility to breast and ovarian cancers. Although the molecular basis of their effects remains largely obscure, many mutations are known to target the highly conserved C-terminal BRCT repeats that function as a phosphoserine/phosphothreonine-binding module. We report the X-ray crystal structure at a resolution of 1.85 A of the BRCA1 tandem BRCT domains in complex with a phosphorylated peptide representing the minimal interacting region of the DEAH-box helicase BACH1. The structure reveals the determinants of this novel class of BRCA1 binding events. We show that a subset of disease-linked mutations act through specific disruption of phospho-dependent BRCA1 interactions rather than through gross structural perturbation of the tandem BRCT domains.
The BRCT repeats in BRCA1 are essential for its tumor suppressor activity and interact with phosphorylated protein targets containing the sequence pSer-X-X-Phe, where X indicates any residue. The structure of the tandem BRCA1 BRCT repeats bound to an optimized phosphopeptide reveals that the N-terminal repeat harbors a conserved BRCT phosphoserine-binding pocket, while the interface between the repeats forms a hydrophobic groove that recognizes the phenylalanine. Crystallographic and biochemical data suggest that the structural integrity of both binding sites is essential for peptide recognition. The diminished peptide-binding capacity observed for cancer-associated BRCA1-BRCT variants may explain the enhanced cancer risks associated with these mutations.
The BRCA1 gene from individuals at risk of breast and ovarian cancers can be screened for the presence of mutations. However, the cancer association of most alleles carrying missense mutations is unknown, thus creating significant problems for genetic counseling. To increase our ability to identify cancer-associated mutations in BRCA1, we set out to use the principles of protein three-dimensional structure as well as the correlation between the cancer-associated mutations and those that abolish transcriptional activation. Thirty-one of 37 missense mutations of known impact on the transcriptional activation function of BRCA1 are readily rationalized in structural terms. Loss-of-function mutations involve nonconservative changes in the core of the BRCA1 C-terminus (BRCT) fold or are localized in a groove that presumably forms a binding site involved in the transcriptional activation by BRCA1; mutations that do not abolish transcriptional activation are either conservative changes in the core or are on the surface outside of the putative binding site. Next, structure-based rules for predicting functional consequences of a given missense mutation were applied to 57 germ-line BRCA1 variants of unknown cancer association. Such a structure-based approach may be helpful in an integrated effort to identify mutations that predispose individuals to cancer.
The recognition of the phosphorylated BACH1 helicase by the BRCA1 C-terminal (BRCT) repeats is important to the tumor suppressor function of BRCA1. Here we report the crystal structure of the BRCT repeats of human BRCA1 bound to a phosphorylated BACH1 peptide at 2.3 A resolution. The phosphorylated serine 990 and phenylalanine 993 of BACH1 anchor the binding to BRCA1 through specific interactions with a surface cleft at the junction of the two BRCT repeats. This surface cleft is highly conserved in BRCA1 across species, suggesting an evolutionarily conserved function of phosphopeptide recognition. Importantly, conserved amino acids critical for BACH1 binding are frequently targeted for missense mutations in breast cancer. These mutations greatly diminish the ability of BRCA1 to interact with the phosphorylated BACH1 peptide. Additional structural analysis revealed significant implications for understanding the function of the BRCT family of proteins in DNA damage and repair signaling.
BRCA1 is inactivated by gene mutations in >50% of familial breast and ovarian cancers. BRCA1 is primarily a nuclear protein, although others previously reported cytoplasmic staining in breast tumor cells. In this study, we demonstrate the cytoplasmic mislocalization of BRCA1 caused by a subgroup of clinically relevant cancer mutations. We show that mutations that disrupt or delete the C-terminal BRCT domains, but not other regions of BRCA1, caused significant relocalization of BRCA1 from nucleus to cytoplasm. Two of the BRCT mutations tested (M1775R and Y1853X) are known to adversely affect BRCA1 protein folding and nuclear function. The BRCT mutations reduced BRCA1 nuclear import by a mechanism consistent with altered protein folding, as indicated by the restoration of nuclear staining by more extensive C-terminal deletions. Furthermore, we observed increased cytoplasmic staining of both the ectopic and endogenous forms of the BRCA1-5382insC mutant (deleted BRCT domain) in HCC1937 breast cancer cells. Unlike wild-type BRCA1, the BRCA1-5382insC mutant failed to form DNA damage-inducible foci when targeted to the nucleus by BARD1. We propose that BRCT mutations alter nuclear targeting of BRCA1, and that this may contribute to the inhibition of nuclear DNA repair and transcription function.
Most cancer-associated BRCA1 mutations identified to date result in the premature translational termination of the protein, highlighting a crucial role for the C-terminal, BRCT repeat region in mediating BRCA1 tumor suppressor function. However, the molecular and genetic effects of missense mutations that map to the BRCT region remain largely unknown. Using a protease-based assay, we directly assessed the sensitivity of the folding of the BRCT domain to an extensive set of truncation and single amino acid substitutions derived from breast cancer screening programs. The protein can tolerate truncations of up to 8 amino acids, but further deletion results in drastic BRCT folding defects. This molecular phenotype can be correlated with an increased susceptibility to disease. A cross-validated computational assessment of the BRCT mutation data base suggests that as much as half of all BRCT missense mutations contribute to BRCA1 loss of function and disease through protein-destabilizing effects. The coupled use of proteolytic methods and computational predictive methods to detect mutant BRCA1 conformations at the protein level will augment the efficacy of current BRCA1 screening protocols, especially in the absence of clinical data that can be used to discriminate deleterious BRCT missense mutations from benign polymorphisms.
Increasing evidence continues to emerge supporting the early hypothesis that BRCA1 might be involved in transcriptional processes. BRCA1 physically associates with more than 15 different proteins involved in transcription and is paradoxically involved in both transcriptional activation and repression. However, the underlying mechanism by which BRCA1 affects the gene expression of various genes remains speculative. In this study, we provide evidence that BRCA1 protein complexes interact with specific DNA sequences. We provide data showing that the upstream stimulatory factor 2 (USF2) physically associates with BRCA1 and is a component of this DNA-binding complex. Interestingly, these DNA-binding complexes are downregulated in breast cancer cell lines containing wild-type BRCA1, providing a critical link between modulations of BRCA1 function in sporadic breast cancers that do not involve germline BRCA1 mutations. The functional specificity of BRCA1 tumor suppression for breast and ovarian tissues is supported by our experiments, which demonstrate that BRCA1 DNA-binding complexes are modulated by serum and estrogen. Finally, functional analysis indicates that missense mutations in BRCA1 that lead to subsequent cancer susceptibility may result in improper gene activation. In summary, these findings establish a role for endogenous BRCA1 protein complexes in transcription via a defined DNA-binding sequence and indicate that one function of BRCA1 is to co-regulate the expression of genes involved in various cellular processes.
Human BRCA1 has a genetically demonstrated role in DNA repair, and has been proposed to act as a transcriptional activator in a limited number of specialized settings. To gain insight into biologically conserved functional motifs, we isolated an ortholog of BRCA1 from cattle (Bos taurus). The predicted protein product shows 72.5% sequence identity with the human protein and conservation of amino acids involved in BRCA1 structure and function. Although the bovine C-terminus is truncated by seven amino acids as compared to human, bovine BRCA1 protein exhibited a similar cell cycle-regulated nuclear expression pattern. Expression was characteristically low and diffuse in the nucleus of G1/G0 cells, followed by increasing BRCA1-positive nuclear speckles in late S phase and G2/M phase cells. Bovine BRCA1 was phosphorylated and nuclear speckling was enhanced in response to DNA-damaging agents. Consistent with evidence from studies of human BRCA1, bovine BRCA1 was shown to interact with RNA polymerase II in vivo, an activity that was mapped to the C-terminal domain (CTD) (bBRCA(1364-1849)). Interestingly, when tested in the GAL4 transcriptional activation assay, full-length bovine and human BRCA1 lacked any ability to act as transcriptional activators and the CTD of bovine BRCA1 had five-fold lower activity when compared to the more acidic human C-terminus. These results provide evidence that phosphorylation and nuclear relocalization are highly conserved features of the BRCA1 response to genotoxic stress. In addition, bovine BRCA1 binds the RNA polymerase II holoenzyme, but this interaction lacks significant ability to correctly orient or recruit RNA polymerase II for transcription in the classic GAL4 transcriptional activation system.
BACKGROUND: An overview of the state of genetic testing for BRCA1 and BRCA2 genes was presented at the Summit Meeting on Breast Cancer Among African American women. METHODS: An exhaustive literature search was performed using PubMed and abstracts published from meetings of the American Association for Cancer Research, the American Society of Human Genetics, and the American Society of Clinical Oncology. The Breast Cancer Information Core was also searched for information regarding sequence variants in which the ethnicity of the individual tested was known. RESULTS: Of the 26 distinct BRCA1 pathogenic mutations (protein-truncating, disease-associated missense, and splice variants) detected in Africans or African Americans, 15 (58%) have not been previously reported. In addition, 18 deleterious BRCA2 mutations have been identified and 10 (56%) of these are unique to the group. Only two pathogenic BRCA1 mutations (943ins10 and M1775R) have been detected in three or more unrelated families. However, seven additional BRCA1 or BRCA2 deleterious mutations have been reported in at least two unrelated families. Three of these recurrent BRCA1 mutations (943ins10, 1832del5, and 5296del4) have been characterized by haplotype studies and each likely arose from a common ancestor, including one ancestor that could be traced to the Ivory Coast in West Africa. Although only a few African-American families have been tested for BRCA1 and BRCA2 mutations, the probability of finding a mutation is invariably dependent on the age of onset and the number of breast and/or ovarian cancer cases in the family. The psychosocial implications of genetic testing for African Americans have not been well studied, so that high-risk African Americans may underestimate their risks of breast and ovarian cancer. CONCLUSIONS: Deleterious BRCA1 and BRCA2 mutations have been identified in African-American and African families. A number of unique mutations have been described, but recurrent mutations are widely dispersed and are not readily identifiable in the few families that have been tested. Access to genetic counseling and testing in a culturally sensitive research setting must remain a high priority before genetic testing can be disseminated in the community.
Mutational inactivation of BRCA1 confers increased risk for breast cancer. However, the underlying basis for the breast tissue-restricted, tumor-suppressive properties of BRCA1 remains poorly defined. Here, we show that BRCA1 and the estrogen receptor alpha (ER-alpha) modulated vascular endothelial growth factor (VEGF) gene transcription and secretion in breast cancer cells. ER-alpha interacted in vitro and in vivo with BRCA1, and this interaction was mediated by the AF-2 domain of ER-alpha and two domains of BRCA1, the amino-acid residues 1-306 and 428-683. Endogenous interaction of ER-alpha with BRCA1 was observed in normal MCF-10A breast epithelial cells and in breast cancer cells (MCF-7 and T47D), and this interaction was significantly reduced in the presence of estrogen. Furthermore, ER-alpha induced activation of VEGF gene transcription, using human VEGF promoter-luciferase reporter constructs. The AF-2 domain of ER-alpha was also shown to induce VEGF gene transcription activation similar to that obtained with the full-length ER-alpha. However, in the presence of BRCA1, VEGF gene transcription activation and VEGF protein secretion were significantly inhibited in a dose-dependent manner. The BRCA1 domain of 1-683 amino acid residues was required for this inhibition of VEGF gene transcription activation. Three mutated forms of BRCA1 (A1708E, M1775R and Y1853X), that have been identified in familial breast cancers, failed to associate with ER-alpha and to suppress VEGF promoter activity and VEGF protein secretion. Overexpression of wild-type BRCA1 in HCC-1937 breast cancer cells that lack endogenous functional BRCA1 significantly reduced VEGF secretion in these cells. These results demonstrate a novel pathogenic mechanism whereby mutations in BRCA1, via their interaction with ER-alpha, could promote tumorigenesis through the hormonal regulation of mammary epithelial cell proliferation and impaired VEGF function, which may lead to cancer growth and angiogenesis.
Germ-line alterations in BRCA1 are associated with an increased susceptibility to breast and ovarian cancer. BRCA1 is a 220-kDa protein that contains a tandem of two BRCA1 C-Terminal (BRCT) domains. Among missense and nonsense BRCA1 mutations responsible for family breast cancer, some are located into the BRCT tandem of BRCA1 coding sequence. In an attempt to understand how BRCT is critical for BRCA1 function, we search for partners of this BRCT tandem of BRCA1. Using a glutathione-S-transferase (GST) pull-down assay with murine cells, we isolated only one major BRCA1-interacting protein, further identified as Acetyl Coenzyme A (CoA) Carboxylase alpha (ACCA). We showed that this interaction is conserved through murine and human species. We also delineated the minimum interacting region as being the whole tandem of BRCT domains. We demonstrated that BRCA1 interacts in vitro and in vivo with ACCA. This interaction is completely abolished by five distinct germline BRCA1 deleterious mutations affecting the BRCT tandem of BRCA1. Interestingly, ACCA originally known as a rate-limiting enzyme for fatty acids biosynthesis, has been recently shown to be over-expressed in breast cancers and considered as a potential target for anti-neoplastic therapy. Furthermore, our observation is making a bridge between the genetic factors involved in susceptibility to breast and ovarian cancers, and environmental factors such as nutrition considered as key elements in the etiology of those cancers.
Previous studies have reported variation in BRCA1 breast and ovarian cancer risks with mutation position, suggesting that mutations toward the 3' end of the gene are associated with lower ovarian cancer risks. We evaluated the evidence for genotype-phenotype correlations in 356 families with protein-truncating BRCA1 mutations. In contrast to previous reports, the ovarian:breast cancer ratio associated with mutations in a central region of the gene (nucleotides 2401-4190) was significantly higher than for other mutations [odds ratio, 1.70 (P = 0.017) compared with nucleotides 1-2400; odds ratio, 1.89 (P = 0.02) compared with nucleotides 4191-end]. The risks of breast and ovarian cancer conferred by mutations in different regions of the gene were estimated separately by conditional maximum likelihood. According to the best fitting model, the breast cancer risk associated with mutations in the central region was found to be significantly lower than for other mutations (relative risk, 0.71; 95% confidence interval, 0.58-0.86; P = 0.0002), whereas the ovarian cancer risk associated with mutations 3' to nucleotide 4191 was significantly reduced relative to the rest of the gene (relative risk, 0.81; 95% confidence interval, 0.66-1.00; P = 0.044). The cancer risks associated with missense mutations in the RING domain in exon 5 appear to be similar to those associated with protein-truncating mutations toward the 3' end of BRCA1, based on nine additional families.
While sequence analysis is considered by many to be the most sensitive method of detecting unknown mutations in large genes such as BRCA1, most published estimates of the prevalence of mutations in this gene have been derived from studies that have used other methods of gene analysis. In order to determine the relative sensitivity of techniques that are widely used in research on BRCA1, a set of blinded samples containing 58 distinct mutations were analysed by four separate laboratories. Each used one of the following methods: single strand conformational polymorphism analysis (SSCP), conformation sensitive gel electrophoresis (CSGE), two dimensional gene scanning (TDGS), and denaturing high performance liquid chromatography (DHPLC). Only the laboratory using DHPLC correctly identified each of the mutations. The laboratory using TDGS correctly identified 91% of the mutations but produced three apparent false positive results. The laboratories using SSCP and CSGE detected abnormal migration for 72% and 76% of the mutations, respectively, but subsequently confirmed and reported only 65% and 60% of mutations, respectively. False negatives therefore resulted not only from failure of the techniques to distinguish wild type from mutant, but also from failure to confirm the mutation by sequence analysis as well as from human errors leading to misreporting of results. These findings characterise sources of error in commonly used methods of mutation detection that should be addressed by laboratories using these methods. Based upon sources of error identified in this comparison, it is likely that mutations in BRCA1 and BRCA2 are more prevalent than some studies have previously reported. The findings of this comparison provide a basis for interpreting studies of mutations in susceptibility genes across many inherited cancer syndromes.
The C-terminal BRCT region of BRCA1 is essential for its DNA repair, transcriptional regulation and tumor suppressor functions. Here we determine the crystal structure of the BRCT domain of human BRCA1 at 2.5 A resolution. The domain contains two BRCT repeats that adopt similar structures and are packed together in a head-to-tail arrangement. Cancer-causing missense mutations occur at the interface between the two repeats and destabilize the structure. The manner by which the two BRCT repeats interact in BRCA1 may represent a general mode of interaction between homologous domains within proteins that interact to regulate the cellular response to DNA damage. The structure provides a basis to predict the structural consequences of uncharacterized BRCA1 mutations.
Germline mutations in the breast and ovarian cancer susceptibility gene BRCA1 are responsible for the majority of cases involving hereditary breast and ovarian cancer. Whereas all truncating mutations are considered as functionally deleterious, most of the missense variants identified to date cannot be readily distinguished as either disease-associated mutations or benign polymorphisms. The C-terminal domain of BRCA1 displays an intrinsic transactivation activity, and mutations linked to disease predisposition have been shown to confer loss of such activity in yeast and mammalian cells. In an attempt to clarify the functional importance of the BRCA1 C-terminus as a transcription activator in cancer predisposition, we have characterized the effect of C-terminal germline variants identified in Scandinavian breast and ovarian cancer families. Missense variants A1669S, C1697R, R1699W, R1699Q, A1708E, S1715R and G1738E and a truncating mutation, W1837X, were characterized using yeast- and mammalian-based transcription assays. In addition, four additional missense variants (V1665M, D1692N, S1715N and D1733G) and one in-frame deletion (V1688del) were included in the study. Our findings demonstrate that transactivation activity may reflect a tumor-suppressing function of BRCA1 and further support the role of BRCA1 missense mutations in disease predisposition. We also report a discrepancy between results from yeast- and mammalian-based assays, indicating that it may not be possible to unambiguously characterize variants with the yeast assay alone. We show that transcription-based assays can aid in the characterization of deleterious mutations in the C-terminal part of BRCA1 and may form the basis of a functional assay.
The BRCA1 C-terminal region contains a duplicated globular domain termed BRCT that is found within many DNA damage repair and cell cycle checkpoint proteins. The unique diversity of this domain superfamily allows BRCT modules to interact forming homo/hetero BRCT multimers, BRCT-non-BRCT interactions, and interactions with DNA strand breaks. The sequence and functional diversity of the BRCT superfamily suggests that BRCT domains are evolutionarily convenient interaction modules.
It is unknown what proportion of women at high risk for breast cancer, entering phase II chemoprevention trials, have BRCA1/2 alterations, and whether their initial biomarker patterns or response to preventive interventions will differ between carriers and non-carriers. As part of a 6-month phase II chemoprevention trial of diflouromethlyornithine (DFMO), high-risk subjects (family history, prior precancerous breast disease or prior breast cancer), who had random peri-areolar fine needle evidence of epithelial hyperplasia with or without atypia, were offered genetic counselling and testing at the completion of their study participation. 97% of the 119 women eligible for testing underwent BRCA1/2 gene sequencing, 3 declined. 26 (22%) of the 116 women had an alteration in BRCA1/2. Known deleterious mutations were present in 3 (3%), uncertain significance mutations in 19 (16%), and probable polymorphisms in 6 (5%). There does not appear to be a difference in initial biomarker distribution between participants with and without germ line alterations.
The breast and ovarian cancer susceptibility gene product BRCA1 is a tumor suppressor, but its precise biochemical function remains unknown. The BRCA1 COOH terminus acts as a transcription activation domain, and germ-line cancer- predisposing mutations in this region abolish transcription activation, whereas benign polymorphisms do not. These results raise the possibility that loss of transcription activation by BRCA1 is crucial for oncogenesis. Therefore, identification of residues involved in transcription activation by BRCA1 will help understand why particular germ-line missense mutations are deleterious and may provide more reliable presymptomatic risk assessment. The BRCA1 COOH terminus (amino acids 1560-1863) consists of two BRCTs preceded by a region likely to be nonglobular. We combined site-directed and random mutagenesis, followed by a functional transcription assay in yeast: (a) error-prone PCR-induced random mutagenesis generated eight unique missense mutations causing loss of function, six of which targeted hydrophobic residues conserved in canine, mouse, rat, and human BRCA1; (b) random insertion of a variable pentapeptide cassette generated 21 insertion mutants. All pentapeptide insertions NH2-terminal to the BRCTs retained wild-type activity, whereas insertions in the BRCTs were, with few exceptions, deleterious; and (c) site-directed mutagenesis was used to characterize five known germ-line mutations and to perform deletion analysis of the COOH terminus. Deletion analysis revealed that the integrity of the most COOH-terminal hydrophobic cluster (I1855, L1854, and Y1853) is necessary for activity. We conclude that the integrity of the BRCT domains is crucial for transcription activation and that hydrophobic residues may be important for BRCT function. Therefore, the yeast-based assay for transcription activation can be used successfully to provide tools for structure-function analysis of BRCA1 and may form the basis of a BRCA1 functional assay.
Germ-line mutations in BRCA1 account for the majority of families with breast and ovarian cancer predisposition. BRCA1 encodes a 1,863 amino acid protein with no ascribed function. Due to its size and the fact that mutations are evenly scattered along the sequence, screening for mutations is particularly challenging. Here we review recently published yeast-based assays that may form the basis of an alternative diagnostic test for BRCA1. Although individually limited, these assays may, when combined, become a useful method to screen for cancer predisposing mutations. In any event, the yeast-based assays could complement results from direct sequencing providing functional information about unique mutations.
Inherited BRCA2 mutations confer profound susceptibility to human breast and ovarian cancer. The rat and mouse Brca2 homologues share 58% and 59% identity (72% similarity), respectively, with the human BRCA2 protein. The Brca2 proteins also share a potential nuclear localization signal (human codons 3263-3269) and a highly conserved large carboxyl region (77% identity, 86% similarity between human and rodents) that may represent important functional domains. At least six of eight previously described BRC repeats have been highly conserved in rats and mice. Expression studies demonstrate an 11-12 Kb transcript with rodent tissue-specific patterns of expression consistent with human BRCA2. These results will facilitate studies of Brca2 function during normal and neoplastic development.
Germline-inactivating mutations of BRCA1 result in a hereditary predisposition to breast and ovarian cancer. Truncating mutations of BRCA1 predispose to cancer and can be ascertained by protein truncation testing or sequencing. However, cancer-predisposing missense mutations of BRCA1 are difficult to distinguish from polymorphisms by genetic testing methods currently used. Here we show that expression of BRCA1 or BRCA1 fused to a GAL4 activation domain in Saccharomyces cerevesiae inhibits growth, resulting in small colonies easily distinguishable from vector-transformed controls. The growth inhibitory effect can be localized to sequences encoding the recently described BRCA1 C-terminal domains. Growth suppression by a BRCA1 fusion protein is not influenced by introduction of neutral polymorphisms but is diminished or abolished by frameshift, nonsense, or disease-associated missense mutations located in the C-terminal 305 amino acids of BRCA1. These observations may permit the functional significance of many BRCA1 sequence changes to be assessed in yeast. Additionally, the correlation of growth suppression with wild-type forms of BRCA1 suggests that the assay may be capable of detecting functionally conserved interactions between the evolutionarily conserved BRCA1 C-terminal domains and cellular elements found in both human and yeast cells.
Mutations in BRCA1 account for 45% of families with high incidence of breast cancer and for 80-90% of families with both breast and ovarian cancer. BRCA1 protein includes an amino-terminal zinc finger motif as well as an excess of negatively charged amino acids near the C terminus. In addition, BRCA1 contains two nuclear localization signals and localizes to the nucleus of normal cells. While these features suggest a role in transcriptional regulation, no function has been assigned to BRCA1. Here, we show that the C-terminal region, comprising exons 16-24 (aa 1560-1863) of BRCA1 fused to GAL4 DNA binding domain can activate transcription both in yeast and mammalian cells. Furthermore, we define the region comprising exons 21-24 (aa 1760-1863) as the minimal transactivation domain. Any one of four germ-line mutations in the C-terminal region found in patients with breast or ovarian cancer (Ala-1708-->Glu, Gln-1756 C+, Met-1775-->Arg, Tyr-1853 ->Stop), had markedly impaired transcription activity. Together these data underscore the notion that one of the functions of BRCA1 may be the regulation of transcription.
BACKGROUND: Inactivating germline mutations in the tumour suppressor gene BRCA1 are associated with a significantly increased risk of developing breast and ovarian cancer. A large number (>1500) of unique BRCA1 variants have been identified in the population and can be classified as pathogenic, non-pathogenic or as variants of unknown significance (VUS). Many VUS are rare missense variants leading to single amino acid changes. Their impact on protein function cannot be directly inferred from sequence information, precluding assessment of their pathogenicity. Thus, functional assays are critical to assess the impact of these VUS on protein activity. BRCA1 is a multifunctional protein and different assays have been used to assess the impact of variants on different biochemical activities and biological processes. METHODS AND RESULTS: To facilitate VUS analysis, we have developed a visualisation resource that compiles and displays functional data on all documented BRCA1 missense variants. BRCA1 Circos is a web-based visualisation tool based on the freely available Circos software package. The BRCA1 Circos web tool (http://research.nhgri.nih.gov/bic/circos/) aggregates data from all published BRCA1 missense variants for functional studies, harmonises their results and presents various functionalities to search and interpret individual-level functional information for each BRCA1 missense variant. CONCLUSIONS: This research visualisation tool will serve as a quick one-stop publically available reference for all the BRCA1 missense variants that have been functionally assessed. It will facilitate meta-analysis of functional data and improve assessment of pathogenicity of VUS.
The breast and ovarian cancer susceptibility protein 1 (BRCA1) plays a central role in DNA damage response (DDR). Two tandem BRCA1 C-terminal (BRCT) domains interact with several proteins that function in DDR and contain the generally accepted motif pS-X-X-F (pS denoting phosphoserine and X any amino acid), including the ATR-interacting protein (ATRIP) and the BRCA1-associated protein required for ATM activation-1 (BAAT1). The crystal structures of the BRCA1 BRCTs bound to the phosphopeptides ATRIP (235-PEACpSPQFG-243) and BAAT1 (266-VARpSPVFSS-274) were determined at 1.75 Å and 2.2 Å resolution, respectively. The pSer and Phe(+3) anchor the phosphopeptides into the BRCT binding groove, with adjacent peptide residues contributing to the interaction. In the BRCA1-ATRIP structure, Gln(+2) is accommodated through a conformational change of the BRCA1 E1698 side chain. Importantly, isothermal titration calorimetry experiments showed that the size and charge of the side chains at peptide positions +1 and +2 contribute significantly to the BRCA1 BRCT-peptide binding affinity. In particular, the Asp(+1) and Glu(+2) in the human CDC27 peptide 816-HAAEpSDEF-823 abrogate the interaction with the BRCA1 BRCTs due in large part to electrostatic repulsion between Glu(+2) and E1698, indicating a preference of these domains for specific side chains at positions +1 and +2. These results emphasize the need for a systematic assessment of the contribution of the peptide residues surrounding pSer and Phe(+3) to the binding affinity and specificity of the BRCA1 BRCTs in order to elucidate the molecular mechanisms underlying the hierarchy of target selection by these versatile domains during DDR and tumorigenesis.
Germline mutations in the tumor suppressor gene BRCA1 confer an estimated lifetime risk of 56-80% for breast cancer and 15-60% for ovarian cancer. Since the mid 1990s when BRCA1 was identified, genetic testing has revealed over 1,500 unique germline variants. However, for a significant number of these variants, the effect on protein function is unknown making it difficult to infer the consequences on risks of breast and ovarian cancers. Thus, many individuals undergoing genetic testing for BRCA1 mutations receive test results reporting a variant of uncertain clinical significance (VUS), leading to issues in risk assessment, counseling, and preventive care. Here, we describe functional assays for BRCA1 to directly or indirectly assess the impact of a variant on protein conformation or function and how these results can be used to complement genetic data to classify a VUS as to its clinical significance. Importantly, these methods may provide a framework for genome-wide pathogenicity assignment.
BRCA1, a multi-domain protein, is mutated in a large percentage of hereditary breast and ovarian cancers. BRCA1 is most often mutated in three domains or regions: the N-terminal RING domain, exons 11-13, and the BRCT domain. The BRCA1 RING domain is responsible for the E3 ubiquitin ligase activity of BRCA1 and mediates interactions between BRCA1 and other proteins. BRCA1 ubiquitinates several proteins with various functions. The BRCA1 BRCT domain binds to phosphoproteins with specific sequences recognized by both BRCA1 and ATM/ATR kinases. Structural studies of the RING and BRCT domains have revealed the molecular basis by which cancer causing mutations impact the functions of BRCA1. While no structural data is available for the amino acids encoded by exons 11-13, multiple binding sites and functional domains exist in this region. Many mutations in exons 11-13 have deleterious effects on the function of these domains. In this mini-review, we examine the structure-function relationships of the BRCA1 protein and the relevance to cancer progression.
Although evidence suggests an importance of genetic factors in the development of breast cancer in Taiwanese (ethnic Chinese) women, including a high incidence of early-onset and secondary contralateral breast cancer, a major breast cancer predisposition gene, BRCA1, has not been well studied in this population. In fact, the carcinogenic impacts of many genetic variants of BRCA1 are unknown and classified as variants of uncertain significance (VUS). It is therefore important to establish a method to characterize the BRCA1 VUSs and understand their role in Taiwanese breast cancer patients. Accordingly, we developed a multimodel assessment strategy consisting of a prescreening portion and a validated functional assay to study breast cancer patients with early-onset, bilateral or familial breast cancer. We found germ-line BRCA1 mutations in 11.1% of our cohort and identified one novel missense mutation, c.5191C>A. Two genetic variants were initially classified as VUSs (c.1155C>T and c.5191C>A). c.1155C>T is not predicted to be deleterious in the prescreening portion of our assessment strategy. c.5191C>A, on the other hand, causes p.T1691K, which is predicted to have high deleterious probability because of significant structural alteration, a high deleterious score in the predictive programs and, clinically, triple negative characteristics in breast tumors. This mutant is confirmed by transcription activation and yeast growth-inhibition assays. In conclusion, we show as high a prevalence of germ-line BRCA1 mutation in high-risk Taiwanese patients as in Caucasians and demonstrate a useful strategy for studying BRCA1 VUSs.
Clinical mutation screening of the BRCA1 and BRCA2 genes for the presence of germline inactivating mutations is used to identify individuals at elevated risk of breast and ovarian cancer. Variants identified during screening are usually classified as pathogenic (increased risk of cancer) or not pathogenic (no increased risk of cancer). However, a significant proportion of genetic tests yields variants of uncertain significance (VUS) that have undefined risk of cancer. Individuals carrying these VUS cannot benefit from individualized cancer risk assessment. Recently, a quantitative "posterior probability model" for assessing the clinical relevance of VUS in BRCA1 or BRCA2, which integrates multiple forms of genetic evidence has been developed. Here, we provide a detailed review of this model. We describe the components of the model and explain how these can be combined to calculate a posterior probability of pathogenicity for each VUS. We explain how the model can be applied to public data and provide tables that list the VUS that have been classified as not pathogenic or pathogenic using this method. While we use BRCA1 and BRCA2 VUS as examples, the method can be used as a framework for classification of the pathogenicity of VUS in other cancer genes.
BACKGROUND: Besides revealing cancer predisposition variants or the absence of any changes, genetic testing for cancer predisposition genes can also identify variants of uncertain clinical significance (VUS). Classifying VUSs is a pressing problem, as ever more patients seek genetic testing for disease syndromes and receive noninformative results from those tests. In cases such as the breast and ovarian cancer syndrome in which prophylactic options can be severe and life changing, having information on the disease relevance of the VUS that a patient harbors can be critical. METHODS: We describe a computational approach for inferring the disease relevance of VUSs in disease genes from data derived from an in vitro functional assay. It is based on a Bayesian hierarchical model that accounts for sources of experimental heterogeneity. RESULTS: The functional data correlate well with the pathogenicity of BRCA1 BRCT VUSs, thus providing evidence regarding pathogenicity when family and genetic data are absent or uninformative. CONCLUSIONS: We show the utility of the model by using it to classify 76 VUSs located in the BRCT region of BRCA1. The approach is both sensitive and specific when evaluated on variants previously classified using independent sources of data. Although the functional data are very informative, they will need to be combined with other forms of data to meet the more stringent requirements of clinical application. IMPACT: Our work will lead to improved classification of VUSs and will aid in the clinical decision making of their carriers.
We introduced a K1702M mutation in the BRCA1 BRCT domain known to prevent the binding of proteins harboring pS-X-X-F motifs such as Abraxas-RAP80, BRIP1, and CtIP. Surprisingly, rather than impairing homologous recombination repair (HRR), expression of K1702M resulted in hyper-recombination coinciding with an accumulation of cells in S-G2 and no effect on nonhomologous end-joining. These cells also showed increased RAD51 and RPA nuclear staining. More pronounced effects were seen with a naturally occurring BRCT mutant (M1775R) that also produced elevated levels of ssDNA, in part co-localizing with RPA, in line with excessive DNA resection. M1775R induced unusual, thread-like promyelocytic leukemia (PML) nuclear bodies and clustered RPA foci rather than the typical juxtaposed RPA-PML foci seen with wild-type BRCA1. Interestingly, K1702M hyper-recombination diminished with a second mutation in the BRCA1 RING domain (I26A) known to reduce BRCA1 ubiquitin-ligase activity. Thesein vitro findings correlated with elevated nuclear RAD51 and RPA staining of breast cancer tissue from a patient with the M1775R mutation. Altogether, the disruption of BRCA1 (BRCT)-pS-X-X-F protein binding results in ubiquitination-dependent hyper-recombination via excessive DNA resection and the appearance of atypical PML-NBs. Thus, certain BRCA1 mutations that cause hyper-recombination instead of reduced DSB repair might lead to breast cancer.
Mutations in the tumor suppressor breast cancer susceptibility gene 1 (BRCA1), an important player in the DNA damage response, apoptosis, cell cycle regulation and transcription, confer a significantly elevated lifetime risk for breast and ovarian cancer. Although the loss of wild-type BRCA1 function is an important mechanism by which mutations confer increased cancer risk, multiple studies suggest mutant BRCA1 proteins may confer functions independent of the loss of wild-type BRCA1 through dominant negative inhibition of remaining wild-type BRCA1, or through novel interactions and pathways. These functions impact various cellular processes and have the potential to significantly influence cancer initiation and progression. In this review, we discuss the functional classifications of risk-associated BRCA1 mutations and their molecular, cellular and clinical impact for mutation carriers.
Genetic screening of the breast and ovarian cancer susceptibility gene BRCA1 has uncovered a large number of variants of uncertain clinical significance. Here, we use biochemical and cell-based transcriptional assays to assess the structural and functional defects associated with a large set of 117 distinct BRCA1 missense variants within the essential BRCT domain of the BRCA1 protein that have been documented in individuals with a family history of breast or ovarian cancer. In the first method, we used limited proteolysis to assess the protein folding stability of each of the mutants compared with the wild-type. In the second method, we used a phosphopeptide pull-down assay to assess the ability of each of the variants to specifically interact with a peptide containing a pSer-X-X-Phe motif, a known functional target of the BRCA1 BRCT domain. Finally, we used transcriptional assays to assess the ability of each BRCT variant to act as a transcriptional activation domain in human cells. Through a correlation of the assay results with available family history and clinical data, we define limits to predict the disease risk associated with each variant. Forty-two of the variants show little effect on function and are likely to represent variants with little or no clinical significance; 50 display a clear functional effect and are likely to represent pathogenic variants; and the remaining 25 variants display intermediate activities. The excellent agreement between the structure/function effects of these mutations and available clinical data supports the notion that functional and structure information can be useful in the development of models to assess cancer risk.
The breast cancer tumor suppressor protein BRCA1 is involved in DNA repair and cell cycle control. Mutations at the two C-terminal tandem (BRCT) repeats of BRCA1 detected in breast tumor patients were identified either to lower the stability of the BRCT domain and/or to disrupt the interaction of BRCT with phoshpopeptides. The aim of this study was to analyze five BRCT pathogenic mutations for their effect on structural integrity and protein stability. For this purpose, the five cancer-associated BRCT mutants: V1696L, M1775K, M1783T, V1809F, and P1812A were cloned in suitable prokaryotic protein production vectors, and the recombinant proteins were purified in soluble and stable form for further biophysical studies. The biophysical analysis of the secondary structure and the thermodynamic stability of the wild-type, wt, and the five mutants of the BRCT domain were performed by Circular Dichroism Spectroscopy (CD) and Differential Scanning Microcalorimetry (DSC), respectively. The binding capacity of the wt and mutant BRCT with (pBACH1/BRIP1) and pCtIP were measured by Isothermal Titration Calorimetry (ITC). The experimental results demonstrated that the five mutations of the BRCT domain: (i) affected the thermal unfolding temperature as well as the unfolding enthalpy of the domain, to a varying degree depending upon the induced destabilization and (ii) altered and/or abolished their affinity to synthetic pBACH1/BRIP1 and pCtIP phosphopeptides by affecting the structural integrity of the BRCT active sites. The presented experimental results are one step towards the elucidation of the effect of various missense mutations on the structure and function of BRCA1-BRCT.
Germline mutations that inactivate BRCA1 are responsible for breast and ovarian cancer susceptibility. One possible outcome of genetic testing for BRCA1 is the finding of a genetic variant of uncertain significance for which there is no information regarding its cancer association. This outcome leads to problems in risk assessment, counseling and preventive care. The purpose of the present study was to functionally evaluate seven unclassified variants of BRCA1 including a genomic deletion that leads to the in-frame loss of exons 16/17 (Delta exons 16/17) in the mRNA, an insertion that leads to a frameshift and an extended carboxy-terminus (5673insC), and five missense variants (K1487R, S1613C, M1652I, Q1826H and V1833M). We analyzed the variants using a functional assay based on the transcription activation property of BRCA1 combined with supervised learning computational models. Functional analysis indicated that variants S1613C, Q1826H, and M1652I are likely to be neutral, whereas variants V1833M, Delta exons 16/17, and 5673insC are likely to represent deleterious variants. In agreement with the functional analysis, the results of the computational analysis also indicated that the latter three variants are likely to be deleterious. Taken together, a combined approach of functional and bioinformatics analysis, plus structural modeling, can be utilized to obtain valuable information pertaining to the effect of a rare variant on the structure and function of BRCA1. Such information can, in turn, aid in the classification of BRCA1 variants for which there is a lack of genetic information needed to provide reliable risk assessment.
Many individuals tested for inherited cancer susceptibility at the BRCA1 gene locus are discovered to have variants of unknown clinical significance (UCVs). Most UCVs cause a single amino acid residue (missense) change in the BRCA1 protein. They can be biochemically assayed, but such evaluations are time-consuming and labor-intensive. Computational methods that classify and suggest explanations for UCV impact on protein function can complement functional tests. Here we describe a supervised learning approach to classification of BRCA1 UCVs. Using a novel combination of 16 predictive features, the algorithms were applied to retrospectively classify the impact of 36 BRCA1 C-terminal (BRCT) domain UCVs biochemically assayed to measure transactivation function and to blindly classify 54 documented UCVs. Majority vote of three supervised learning algorithms is in agreement with the assay for more than 94% of the UCVs. Two UCVs found deleterious by both the assay and the classifiers reveal a previously uncharacterized putative binding site. Clinicians may soon be able to use computational classifiers such as those described here to better inform patients. These classifiers can be adapted to other cancer susceptibility genes and systematically applied to prioritize the growing number of potential causative loci and variants found by large-scale disease association studies.
The BRCA1 gene from individuals at risk of breast and ovarian cancers can be screened for the presence of mutations. However, the cancer association of most alleles carrying missense mutations is unknown, thus creating significant problems for genetic counseling. To increase our ability to identify cancer-associated mutations in BRCA1, we set out to use the principles of protein three-dimensional structure as well as the correlation between the cancer-associated mutations and those that abolish transcriptional activation. Thirty-one of 37 missense mutations of known impact on the transcriptional activation function of BRCA1 are readily rationalized in structural terms. Loss-of-function mutations involve nonconservative changes in the core of the BRCA1 C-terminus (BRCT) fold or are localized in a groove that presumably forms a binding site involved in the transcriptional activation by BRCA1; mutations that do not abolish transcriptional activation are either conservative changes in the core or are on the surface outside of the putative binding site. Next, structure-based rules for predicting functional consequences of a given missense mutation were applied to 57 germ-line BRCA1 variants of unknown cancer association. Such a structure-based approach may be helpful in an integrated effort to identify mutations that predispose individuals to cancer.
Mutations in BRCA1 account for 45% of families with high incidence of breast cancer and for 80-90% of families with both breast and ovarian cancer. BRCA1 protein includes an amino-terminal zinc finger motif as well as an excess of negatively charged amino acids near the C terminus. In addition, BRCA1 contains two nuclear localization signals and localizes to the nucleus of normal cells. While these features suggest a role in transcriptional regulation, no function has been assigned to BRCA1. Here, we show that the C-terminal region, comprising exons 16-24 (aa 1560-1863) of BRCA1 fused to GAL4 DNA binding domain can activate transcription both in yeast and mammalian cells. Furthermore, we define the region comprising exons 21-24 (aa 1760-1863) as the minimal transactivation domain. Any one of four germ-line mutations in the C-terminal region found in patients with breast or ovarian cancer (Ala-1708-->Glu, Gln-1756 C+, Met-1775-->Arg, Tyr-1853 ->Stop), had markedly impaired transcription activity. Together these data underscore the notion that one of the functions of BRCA1 may be the regulation of transcription.
To date, inheritance of a mutant BRCA1 or BRCA2 gene is the best-established indicator of an increased risk of developing breast cancer. Sequence analysis of these genes is being used to identify BRCA1/2 mutation carriers, though these efforts are hampered by the high frequency of variants of unknown clinical significance (VUSs). Functional evaluation of such variants has been restricted due to lack of a physiologically relevant assay. In this study we developed a functional assay using mouse ES cells to study variants of BRCA1. We introduced BAC clones with human wild-type BRCA1 or variants into Brca1-null ES cells and confirmed that only wild-type and a known neutral variant rescued cell lethality. The same neutral variant was also able to rescue embryogenesis in Brca1-null mice. A test of several BRCT domain mutants revealed all to be deleterious, including a VUS. Furthermore, we used this assay to determine the effects of BRCA1 variants on cell cycle regulation, differentiation, and genomic stability. Importantly, we discovered that ES cells rescued by S1497A BRCA1 exhibited significant hypersensitivity after gamma-irradiation. Our results demonstrate that this ES cell-based assay is a powerful and reliable method for analyzing the functional impact of BRCA1 variants, which we believe could be used to determine which patients may require preventative treatments.
The BRCA1 gene from individuals at risk of breast and ovarian cancers can be screened for the presence of mutations. However, the cancer association of most alleles carrying missense mutations is unknown, thus creating significant problems for genetic counseling. To increase our ability to identify cancer-associated mutations in BRCA1, we set out to use the principles of protein three-dimensional structure as well as the correlation between the cancer-associated mutations and those that abolish transcriptional activation. Thirty-one of 37 missense mutations of known impact on the transcriptional activation function of BRCA1 are readily rationalized in structural terms. Loss-of-function mutations involve nonconservative changes in the core of the BRCA1 C-terminus (BRCT) fold or are localized in a groove that presumably forms a binding site involved in the transcriptional activation by BRCA1; mutations that do not abolish transcriptional activation are either conservative changes in the core or are on the surface outside of the putative binding site. Next, structure-based rules for predicting functional consequences of a given missense mutation were applied to 57 germ-line BRCA1 variants of unknown cancer association. Such a structure-based approach may be helpful in an integrated effort to identify mutations that predispose individuals to cancer.
Mutations in BRCA1 account for 45% of families with high incidence of breast cancer and for 80-90% of families with both breast and ovarian cancer. BRCA1 protein includes an amino-terminal zinc finger motif as well as an excess of negatively charged amino acids near the C terminus. In addition, BRCA1 contains two nuclear localization signals and localizes to the nucleus of normal cells. While these features suggest a role in transcriptional regulation, no function has been assigned to BRCA1. Here, we show that the C-terminal region, comprising exons 16-24 (aa 1560-1863) of BRCA1 fused to GAL4 DNA binding domain can activate transcription both in yeast and mammalian cells. Furthermore, we define the region comprising exons 21-24 (aa 1760-1863) as the minimal transactivation domain. Any one of four germ-line mutations in the C-terminal region found in patients with breast or ovarian cancer (Ala-1708-->Glu, Gln-1756 C+, Met-1775-->Arg, Tyr-1853 ->Stop), had markedly impaired transcription activity. Together these data underscore the notion that one of the functions of BRCA1 may be the regulation of transcription.
The BRCA1 gene from individuals at risk of breast and ovarian cancers can be screened for the presence of mutations. However, the cancer association of most alleles carrying missense mutations is unknown, thus creating significant problems for genetic counseling. To increase our ability to identify cancer-associated mutations in BRCA1, we set out to use the principles of protein three-dimensional structure as well as the correlation between the cancer-associated mutations and those that abolish transcriptional activation. Thirty-one of 37 missense mutations of known impact on the transcriptional activation function of BRCA1 are readily rationalized in structural terms. Loss-of-function mutations involve nonconservative changes in the core of the BRCA1 C-terminus (BRCT) fold or are localized in a groove that presumably forms a binding site involved in the transcriptional activation by BRCA1; mutations that do not abolish transcriptional activation are either conservative changes in the core or are on the surface outside of the putative binding site. Next, structure-based rules for predicting functional consequences of a given missense mutation were applied to 57 germ-line BRCA1 variants of unknown cancer association. Such a structure-based approach may be helpful in an integrated effort to identify mutations that predispose individuals to cancer.
Mutations in BRCA1 account for 45% of families with high incidence of breast cancer and for 80-90% of families with both breast and ovarian cancer. BRCA1 protein includes an amino-terminal zinc finger motif as well as an excess of negatively charged amino acids near the C terminus. In addition, BRCA1 contains two nuclear localization signals and localizes to the nucleus of normal cells. While these features suggest a role in transcriptional regulation, no function has been assigned to BRCA1. Here, we show that the C-terminal region, comprising exons 16-24 (aa 1560-1863) of BRCA1 fused to GAL4 DNA binding domain can activate transcription both in yeast and mammalian cells. Furthermore, we define the region comprising exons 21-24 (aa 1760-1863) as the minimal transactivation domain. Any one of four germ-line mutations in the C-terminal region found in patients with breast or ovarian cancer (Ala-1708-->Glu, Gln-1756 C+, Met-1775-->Arg, Tyr-1853 ->Stop), had markedly impaired transcription activity. Together these data underscore the notion that one of the functions of BRCA1 may be the regulation of transcription.
Members of the breast cancer 1 (BRCA1) carboxy-terminal (BRCT) superfamily are involved in the cellular response to the DNA damage sensing and repair, as well as in the cell cycle control. All proteins are characterized by one or more BRCT domain(s), which provides a flexible framework representing scaffolding element(s) in multi-protein complexes. In particular, BRCA1, nibrin (NBN), and microcephalin (MCPH1), generally considered as molecular models for cancer-prone syndromes, contain BRCT domains able to bind phosphorylated proteins. Mutations within the BRCT domains of BRCA1, NBN, and MCPH1 are responsible for cancer susceptibility, both at the homozygous and heterozygous status. Here, we report a critical analysis of: (i) the BRCT domain structure, (ii) the role of BRCA1, NBN, and MCPH1 in DNA damage sensing and repair as well as in cell cycle control, and (iii) the pathological effects of mutations within the BRCT domains of BRCA1, NBN, and MCPH1.
Mutations in BRCA1 account for 45% of families with high incidence of breast cancer and for 80-90% of families with both breast and ovarian cancer. BRCA1 protein includes an amino-terminal zinc finger motif as well as an excess of negatively charged amino acids near the C terminus. In addition, BRCA1 contains two nuclear localization signals and localizes to the nucleus of normal cells. While these features suggest a role in transcriptional regulation, no function has been assigned to BRCA1. Here, we show that the C-terminal region, comprising exons 16-24 (aa 1560-1863) of BRCA1 fused to GAL4 DNA binding domain can activate transcription both in yeast and mammalian cells. Furthermore, we define the region comprising exons 21-24 (aa 1760-1863) as the minimal transactivation domain. Any one of four germ-line mutations in the C-terminal region found in patients with breast or ovarian cancer (Ala-1708-->Glu, Gln-1756 C+, Met-1775-->Arg, Tyr-1853 ->Stop), had markedly impaired transcription activity. Together these data underscore the notion that one of the functions of BRCA1 may be the regulation of transcription.

Literature for similar variants in homologous proteins

There is no literature available for variants in a homologous proteins

corona.ai classification

Classification: pathogenic according to Clinvar

This variant was found in the Clinvar dataset. According to this authoritative source this variant is classified as pathogenic. A prediction is available for this variant, but this source takes precedence in our classification.

corona.ai prediction details

Prediction: pathogenic 88%

The Met1775Lys mutation in the protein has been classified as pathogenic by our ensemble classifier system, with high confidence. There is a 80% agreement between all subclassifiers.

Data quality

Data quality for this region is considered good. This means that enhanced, deep alignments are present and there is a variety of data for the algorithm to predict from.

Prediction factors

External models have estimated which sets of features contributed primarily to the classification. These sets of features are listed here.

Primary contributing factors

  • Structural features point towards benign
  • Alignment depth features point towards pathogenic
  • Residue differences point towards pathogenic
  • Position features point towards pathogenic

Evolutionary pressure

Conservation

The wildtype was observed in 44.58% of the 507 sequences analyzed. The variant type was observed in < 1% of observed sequences.


This residue is involved in 8 Hydrophobic interactions.

Interaction statistics were calculated using advanced molecular optimization techniques and may not be visible in the plain PDB file. Please download the YASARA scene to explore the interactions in more detail.